glucagon-like-peptide-1-(7-36)amide has been researched along with Hyperglycemia* in 13 studies
2 review(s) available for glucagon-like-peptide-1-(7-36)amide and Hyperglycemia
Article | Year |
---|---|
[Glucagon and GLP (glucagon-like peptide)].
Topics: Animals; Diabetes Mellitus; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Hyperglycemia; Peptide Fragments; Peptides; Protein Precursors | 2002 |
Central glucagon-like peptide-I in the control of feeding.
Topics: Animals; Brain; Feeding Behavior; Genes, fos; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Humans; Hyperglycemia; Hyperinsulinism; Neurons; Peptide Fragments; Protein Precursors; Rats; Rats, Zucker; Receptors, Glucagon; Venoms | 1996 |
7 trial(s) available for glucagon-like-peptide-1-(7-36)amide and Hyperglycemia
Article | Year |
---|---|
Glucagon-like peptide-1 protects against ischemic left ventricular dysfunction during hyperglycemia in patients with coronary artery disease and type 2 diabetes mellitus.
Enhancement of myocardial glucose uptake may reduce fatty acid oxidation and improve tolerance to ischemia. Hyperglycemia, in association with hyperinsulinemia, stimulates this metabolic change but may have deleterious effects on left ventricular (LV) function. The incretin hormone, glucagon-like peptide-1 (GLP-1), also has favorable cardiovascular effects, and has emerged as an alternative method of altering myocardial substrate utilization. In patients with coronary artery disease (CAD), we investigated: (1) the effect of a hyperinsulinemic hyperglycemic clamp (HHC) on myocardial performance during dobutamine stress echocardiography (DSE), and (2) whether an infusion of GLP-1(7-36) at the time of HHC protects against ischemic LV dysfunction during DSE in patients with type 2 diabetes mellitus (T2DM).. In study 1, twelve patients underwent two DSEs with tissue Doppler imaging (TDI)-one during the steady-state phase of a HHC. In study 2, ten patients with T2DM underwent two DSEs with TDI during the steady-state phase of a HHC. GLP-1(7-36) was infused intravenously at 1.2 pmol/kg/min during one of the scans. In both studies, global LV function was assessed by ejection fraction and mitral annular systolic velocity, and regional wall LV function was assessed using peak systolic velocity, strain and strain rate from 12 paired non-apical segments.. In study 1, the HHC (compared with control) increased glucose (13.0 ± 1.9 versus 4.8 ± 0.5 mmol/l, p < 0.0001) and insulin (1,212 ± 514 versus 114 ± 47 pmol/l, p = 0.01) concentrations, and reduced FFA levels (249 ± 175 versus 1,001 ± 333 μmol/l, p < 0.0001), but had no net effect on either global or regional LV function. In study 2, GLP-1 enhanced both global (ejection fraction, 77.5 ± 5.0 versus 71.3 ± 4.3%, p = 0.004) and regional (peak systolic strain -18.1 ± 6.6 versus -15.5 ± 5.4%, p < 0.0001) myocardial performance at peak stress and at 30 min recovery. These effects were predominantly driven by a reduction in contractile dysfunction in regions subject to demand ischemia.. In patients with CAD, hyperinsulinemic hyperglycemia has a neutral effect on LV function during DSE. However, GLP-1 at the time of hyperglycemia improves myocardial tolerance to demand ischemia in patients with T2DM.. http://www.isrctn.org . Unique identifier ISRCTN69686930. Topics: Aged; Biomarkers; Biomechanical Phenomena; Blood Glucose; Coronary Artery Disease; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Echocardiography, Doppler, Color; Echocardiography, Stress; Female; Glucagon-Like Peptide 1; Glucose Clamp Technique; Humans; Hyperglycemia; Incretins; Infusions, Intravenous; Insulin; Male; Middle Aged; Myocardial Contraction; Peptide Fragments; Stroke Volume; Ventricular Dysfunction, Left; Ventricular Function, Left | 2015 |
Intravenous GLP-1 (7-36) amide for prevention of hyperglycemia during cardiac surgery: a randomized, double-blind, placebo-controlled study.
The authors sought to evaluate the efficacy of an intravenous glucagon-like peptide-1 (GLP-1) infusion, compared with placebo, to mitigate intraoperative hyperglycemia.. Prospective, double-blinded, randomized, placebo-controlled.. University hospital.. Diabetic (non-insulin dependent) and non-diabetic patients undergoing elective cardiac surgery with cardiopulmonary bypass.. Patients were randomized in a 1:1 fashion to GLP-1 (7-36) amide infusion (1.5 pmol/kg/min) or placebo. Insulin was administered intraoperatively to both groups per a standardized protocol.. A total of 77 patients were included for analysis (GLP-1, n = 37; placebo, n = 40). Mean blood glucose during cardiopulmonary bypass was 127.5 mg/dL and 142.5 mg/dL (p = 0.002) in the GLP-1 and placebo groups, respectively. Mean blood glucose values during the entire intraoperative course were 12.2 mg/dL lower for subjects given GLP-1 (95% CI 2.3, 22, p = 0.015), independent of time. During the period of cardiopulmonary bypass, mean blood glucose values in subjects given GLP-1 were 14.1 mg/dL lower than those who received placebo (95% CI 3.5, 24.8, p = 0.009), independent of time. The incidence of hypoglycemia did not differ significantly between the 2 groups.. Administration of intravenous GLP-1 (7-36) amide to patients undergoing cardiac surgery significantly reduced their plasma glucose levels intraoperatively and may represent a novel therapeutic strategy to prevent perioperative hyperglycemia. Topics: Adult; Aged; Aged, 80 and over; Blood Glucose; Cardiac Surgical Procedures; Double-Blind Method; Female; Glucagon-Like Peptide 1; Humans; Hyperglycemia; Hypoglycemic Agents; Infusions, Intravenous; Intraoperative Care; Male; Middle Aged; Peptide Fragments; Prospective Studies; Treatment Outcome | 2014 |
Blood glucose control in healthy subject and patients receiving intravenous glucose infusion or total parenteral nutrition using glucagon-like peptide 1.
It was the aim of the study to examine whether the insulinotropic gut hormone GLP-1 is able to control or even normalise glycaemia in healthy subjects receiving intravenous glucose infusions and in severely ill patients hyperglycaemic during total parenteral nutrition.. Eight healthy subjects and nine patients were examined. The volunteers received, in six separate experiments in randomised order, intravenous glucose at doses of 0, 2 and 5mg kg(-1) min(-1), each with intravenous GLP-1 or placebo for 6 h. Patients were selected on the basis of hyperglycaemia (>150 mg/dl) during complete parenteral nutrition with glucose (3.2+/-1.4 mg kg(-1) min(-1)), amino acids (n=8; 0.9+/-0.2 mg kg(-1) min(-1)), with or without lipid emulsions. Four hours (8 a.m. to 12 a.m. on parenteral nutrition plus NaCl as placebo) were compared to 4 h (12 a.m. to 4 p.m.) with additional GLP-1 administered intravenously. The dose of GLP-1 was 1.2 pmol kg(-1) min(-1). Blood was drawn for the determination of glucose, insulin, C-peptide, GLP-1, glucagon, and free fatty acids.. Glycaemia was raised dose-dependently by glucose infusions in healthy volunteers (p<0.0001). GLP-1 ( approximately 100-150 pmol/l) stimulated insulin and reduced glucagon secretion and reduced glucose concentrations into the normoglycaemic fasting range (all p<0.05). In hyperglycaemic patients, glucose concentrations during the placebo period averaged 211+/-24 mg/dl. This level was reduced to 159+/-25 mg/dl with GLP-1 (p<0.0001), accompanied by a rise in insulin (p=0.0002) and C-peptide (p<0.0001), and by trend towards a reduction in glucagon (p=0.08) and free fatty acids (p=0.02). GLP-1 was well tolerated.. Hyperglycaemia during parenteral nutrition can be controlled by exogenous GLP-1, e.g. the natural peptide (available today), whereas the chronic therapy of Type 2 diabetes requires GLP-1 derivatives with longer duration of action. Topics: Adult; Blood Glucose; Diabetes Mellitus, Type 2; Dose-Response Relationship, Drug; Fatty Acids; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Humans; Hyperglycemia; Infusions, Intravenous; Insulin; Male; Middle Aged; Parenteral Nutrition, Total; Peptide Fragments; Placebos | 2004 |
The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype.
The effect of the insulinotropic incretin hormone, glucagon-like peptide-1 (GLP-1), is preserved in typical middle-aged, obese, insulin-resistant type 2 diabetic patients, whereas a defective amplification of the so-called late-phase plasma insulin response (20-120 min) to glucose by the other incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is seen in these patients. The aim of the present investigation was to evaluate plasma insulin and C-peptide responses to GLP-1 and GIP in five groups of diabetic patients with etiology and phenotype distinct from the obese type 2 diabetic patients. We studied (six in each group): 1) patients with diabetes mellitus secondary to chronic pancreatitis; 2) lean type 2 diabetic patients (body mass index < 25 kg/m(2)); 3) patients with latent autoimmune diabetes in adults; 4) diabetic patients with mutations in the HNF-1alpha gene [maturity-onset diabetes of the young (MODY)3]; and 5) newly diagnosed type 1 diabetic patients. All participants underwent three hyperglycemic clamps (2 h, 15 mM) with continuous infusion of saline, 1 pmol GLP-1 (7-36)amide/kg body weight.min or 4 pmol GIP pmol/kg body weight.min. The early-phase (0-20 min) plasma insulin response tended to be enhanced by both GIP and GLP-1, compared with glucose alone, in all five groups. In contrast, the late-phase (20-120 min) plasma insulin response to GIP was attenuated, compared with the plasma insulin response to GLP-1, in all five groups. Significantly higher glucose infusion rates were required during the late phase of the GLP-1 stimulation, compared with the GIP stimulation. In conclusion, lack of GIP amplification of the late-phase plasma insulin response to glucose seems to be a consequence of diabetes mellitus, characterizing most, if not all, forms of diabetes. Topics: Adult; Aged; Blood Glucose; C-Peptide; Chronic Disease; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; DNA-Binding Proteins; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Hepatocyte Nuclear Factor 1; Hepatocyte Nuclear Factor 1-alpha; Hepatocyte Nuclear Factor 1-beta; Humans; Hyperglycemia; Insulin; Islets of Langerhans; Male; Middle Aged; Neurotransmitter Agents; Nuclear Proteins; Pancreatitis; Peptide Fragments; Phenotype; Protein Precursors; Transcription Factors | 2003 |
A novel hyperglycaemic clamp for characterization of islet function in humans: assessment of three different secretagogues, maximal insulin response and reproducibility.
Characterization of beta-cell function in humans is essential for identifying genetic defects involved in abnormal insulin secretion and the pathogenesis of type 2 diabetes.. We designed a novel test assessing plasma insulin and C-peptide in response to 3 different secretagogues. Seven lean, healthy volunteers twice underwent a 200 min hyperglycaemic clamp (10 mmol L-1) with administration of GLP-1 (1.5 pmol. kg-1. min-1) starting at 120 min and an arginine bolus at 180 min. We determined glucose-induced first and second-phase insulin secretion, GLP-1-stimulated insulin secretion, arginine-stimulated insulin response (increase above prestimulus, DeltaIarg) and the maximal, i. e. highest absolute, insulin concentration (Imax). Insulin sensitivity was assessed during second-phase hyperglycaemia. On a third occasion 6 subjects additionally received an arginine bolus at > 25 mM blood glucose, a test hitherto claimed to provoke maximal insulin secretion.. Insulin levels increased from 46 +/- 11 pM to 566 +/- 202 pM at 120 min, to 5104 +/- 1179 pM at 180 min and to maximally 8361 +/- 1368 pM after arginine (all P < 0.001). The within subject coefficients of variation of the different secretion parameters ranged from 10 +/- 3% to 16 +/- 6%. Except for second-phase which failed to correlate significantly with DeltaIarg (r = 0.52, P = 0.23) and Imax (r = 0.75, P = 0.053) all phases of insulin secretion correlated with one another. The insulin concentration after the arginine bolus at > 25 mM glucose (n = 6) was 2773 +/- 855 pM vs. 7562 +/- 1168 pM for Imax (P = 0.003).. This novel insulin secretion test elicits a distinct pattern of plasma insulin concentrations in response to the secretagogues glucose, GLP-1 and arginine and is highly reproducible and can be used for differential characterization of islet function. Topics: Adult; Arginine; Blood Glucose; C-Peptide; Diabetes Mellitus, Type 2; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Glucose Clamp Technique; Humans; Hyperglycemia; Insulin; Insulin Resistance; Insulin Secretion; Islets of Langerhans; Male; Peptide Fragments; Protein Precursors; Reproducibility of Results | 2000 |
Acute incretin response to oral glucose is associated with stimulation of gastric inhibitory polypeptide, not glucagon-like peptide in young subjects.
Oral glucose induces a greater insulin response than i.v. glucose, a difference apparently due to the secretion of gut factors ("incretins"). Studies examining the mechanisms of this finding in human subjects are limited, however, because of differences in glucose profiles. To overcome this obstacle, we studied eight young nonobese subjects using the hyperglycemic clamp with and without superimposed ingestion of oral glucose. In both studies, glucose was acutely raised by 12.5 mg/dL above fasting values by the infusion of i.v. glucose and maintained at this level for 180 min. During the experimental study, but not the control, each subject ingested oral glucose (30 g) at 120 min, and the glucose infusion was adjusted to maintain the plasma glucose plateau. Plasma insulin responses were nearly identical during both studies until oral glucose was added. After oral glucose, both plasma insulin and C-peptide levels sharply increased by 45-55% above control values (p < 0.001), indicating a potentiation of insulin secretion rather than decreased hepatic extraction of insulin. Plasma gastric inhibitory polypeptide (GIP) levels increased significantly in response to oral glucose, whereas plasma levels of glucagon-like peptide-1 (7-37) were not affected. The time course of the rise in plasma GIP and insulin was nearly identical. We conclude that the GIP response to a modest oral glucose load may play an important physiologic role in glucose-stimulated insulin secretion in healthy young subjects. Topics: Administration, Oral; Adolescent; Adult; C-Peptide; Gastric Inhibitory Polypeptide; Gastrointestinal Hormones; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Glucose Clamp Technique; Humans; Hyperglycemia; Peptide Fragments; Peptides; Secretory Rate; Stimulation, Chemical | 1997 |
Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients.
Glucagon-like peptide 1 (GLP-1) (7-36 amide) is a physiological incretin hormone that is released after nutrient intake from the lower gut and stimulates insulin secretion at elevated plasma glucose concentrations. Previous work has shown that even in Type 2 (non-insulin-dependent) diabetic patients GLP-1 (7-36 amide) retains much of its insulinotropic action. However, it is not known whether the magnitude of this response is sufficient to normalize plasma glucose in Type 2 diabetic patients with poor metabolic control. Therefore, in 10 Type 2 diabetic patients with unsatisfactory metabolic control (HbA1c 11.6 +/- 1.7%) on diet and sulphonylurea therapy (in some patients supplemented by metformin or acarbose), 1.2 pmol x kg-1 x min-1 GLP-1 (7-36 amide) or placebo was infused intravenously in the fasting state (plasma glucose 13.1 +/- 0.6 mmol/l). In all patients, insulin (by 17.4 +/- 4.7 nmol x 1-1 x min; p = 0.0157) and C-peptide (by 228.0 +/- 39.1 nmol x 1-1 x min; p = 0.0019) increased significantly over basal levels, glucagon was reduced (by -1418 +/- 308 pmol x 1-1 x min) and plasma glucose reached normal fasting concentrations (4.9 +/- 0.3 mmol/l) within 4 h of GLP-1 (7-36 amide) administration, but not with placebo. When normal fasting plasma glucose concentrations were reached insulin returned towards basal levels and plasma glucose concentrations remained stable despite the ongoing infusion of GLP-1 (7-36 amide). Therefore, exogenous GLP-1 (7-36 amide) is an effective means of normalizing fasting plasma glucose concentrations in poorly-controlled Type 2 diabetic patients.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Adult; Blood Glucose; Diabetes Mellitus, Type 2; Fasting; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glycated Hemoglobin; Humans; Hyperglycemia; Hypoglycemic Agents; Infusions, Intravenous; Kinetics; Male; Middle Aged; Peptide Fragments; Time Factors | 1993 |
4 other study(ies) available for glucagon-like-peptide-1-(7-36)amide and Hyperglycemia
Article | Year |
---|---|
The influences of juvenile diabetes on memory and hippocampal plasticity in rats: improving effects of glucagon-like peptide-1.
Previous studies in children with diabetes found that hyperglycemia induces memory dysfunction. In this study, we investigated memory and synaptic plasticity in streptozotocine (STZ)-induced diabetic rats during the juvenile period. We further investigated the effects of glucagon-like peptide-1 (GLP-1) on the diabetes-induced profiles. STZ (85 mg/kg, i.p.) was administered to 17-day-old Wistar rats to induce type-1 juvenile diabetes mellitus (JDM). In the Y-maze test, JDM rats showed significant impairment of learning and memory, which were improved by GLP-1 (7-36) amide (1 microg/5 microl/rat, i.c.v.). Extracellular recording at Schaffer collateral synapses in the CA1 region of hippocampal slices showed that long-term potentiation and paired-pulse facilitation in JDM rats were similar to age-matched control rats. However, the input-output relation was strengthened, and long-term depression (LTD) and responses of N-methyl d-aspartic acid through NR2B subunits were weakened in the JDM rats. GLP-1 (7-36) amide (100 nM) increased the magnitude of LTD and the responses through NR2B in the JDM rats. These results indicate that the lack of LTD and NR2B responses may contribute to impairment of memory associated with JDM, suggesting the potential usefulness of GLP-1 in the treatment of memory dysfunction in JDM. Topics: Animals; Diabetes Mellitus, Experimental; Excitatory Postsynaptic Potentials; Female; Glucagon-Like Peptide 1; Hippocampus; Hyperglycemia; In Vitro Techniques; Long-Term Synaptic Depression; Male; Maze Learning; Memory Disorders; N-Methylaspartate; Neuronal Plasticity; Peptide Fragments; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Streptozocin; Synaptic Transmission | 2009 |
Degradation and glycemic effects of His(7)-glucitol glucagon-like peptide-1(7-36)amide in obese diabetic ob/ob mice.
Glucagon-like peptide-1(7-36)amide (tGLP-1) has attracted considerable potential as a possible therapeutic agent for type 2 diabetes. However, tGLP-1 is rapidly inactivated in vivo by the exopeptidase dipeptidyl peptidase IV (DPP IV), thereby terminating its insulin releasing activity. The present study has examined the ability of a novel analogue, His(7)-glucitol tGLP-1 to resist plasma degradation and enhance the insulin-releasing and antihyperglycemic activity of the peptide in 20-25-week-old obese diabetic ob/ob mice. Degradation of native tGLP-1 by incubation at 37 degrees C with obese mouse plasma was clearly evident after 3 h (35% intact). After 6 h, more than 87% of tGLP-1 was converted to GLP-1(9-36)amide and two further N-terminal fragments, GLP-1(7-28) and GLP-1(9-28). In contrast, His(7)-glucitol tGLP-1 was completely resistant to N-terminal degradation. The formation of GLP-1(9-36)amide from native tGLP-1 was almost totally abolished by addition of diprotin A, a specific inhibitor of DPP IV. Effects of tGLP-1 and His(7)-glucitol tGLP-1 were examined in overnight fasted obese mice following i.p. injection of either peptide (30 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Plasma glucose was significantly lower and insulin response greater following administration of His(7)-glucitol tGLP-1 as compared to glucose alone. Native tGLP-1 lacked antidiabetic effects under the conditions employed, and neither peptide influenced the glucose-lowering action of exogenous insulin (50 units/kg). Twice daily s.c. injection of ob/ob mice with His(7)-glucitol tGLP-1 (10 nmol/kg) for 7 days reduced fasting hyperglycemia and greatly augmented the plasma insulin response to the peptides given in association with feeding. These data demonstrate that His(7)-glucitol tGLP-1 displays resistance to plasma DPP IV degradation and exhibits antihyperglycemic activity and substantially enhanced insulin-releasing action in a commonly used animal model of type 2 diabetes. Topics: Animals; Blood Glucose; Chromatography, High Pressure Liquid; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Eating; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Hyperglycemia; Hypoglycemic Agents; Insulin; Mice; Mice, Obese; Oligopeptides; Peptide Fragments; Protease Inhibitors; Protein Precursors; Spectrometry, Mass, Electrospray Ionization; Time Factors | 2001 |
Effects of glucagon-like peptide 1 (7-36 amide) on glucose kinetics during somatostatin-induced suppression of insulin secretion in healthy men.
Glucagon-like peptide 1 (GLP-1) is known to stimulate insulin secretion and biosynthesis, but has also been shown to decrease insulin requirements in type 1 diabetic subjects suggesting insulin-independent effects. To assess whether GLP-1 exerts also direct effects on whole-body glucose metabolism, 6,6-D2-glucose kinetics were measured in 8 healthy volunteers receiving once GLP-1, once saline during hyperglycemic glucose clamping, while somatostatin with replacement amounts of insulin, glucagon and growth hormone was infused. Even though endogenous insulin secretion could not be blocked completely (increased plasma concentrations of C-peptide and proinsulin), somatostatin infusion resulted in stable insulin and glucagon plasma levels in both protocols (GLP-1 vs. placebo: NS). After 3 h of GLP-1 infusion, peripheral glucose disappearance significantly increased compared to placebo (p < 0.03) despite of somatostatin-induced suppression of insulin and glucagon secretion. Thus, GLP-1 infusion seems to have direct stimulatory effects on peripheral glucose metabolism in man. Topics: Adult; Blood Glucose; C-Peptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Clamp Technique; Humans; Hyperglycemia; Infusions, Intravenous; Insulin; Insulin Secretion; Kinetics; Male; Peptide Fragments; Proinsulin; Somatostatin | 1998 |
Hyperglycaemia but not hyperinsulinaemia prevents the secretion of glucagon-like peptide-1 (7-36 amide) stimulated by fat ingestion.
The effect of insulin and glucose on fat-induced gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (7-36 amide) (GLP-1 (7-36 amide)) was studied in five healthy subjects during continuous glucose infusion (Protocol 1) and during hyperinsulinaemic euglycaemic blood glucose clamp (Protocol 2). In Protocol 1, 50 g fat was orally ingested and glucose was infused at a rate of 0.7 g/kg/h for 2 h continuously from the time of fat ingestion. Either glucose infusion alone or fat ingestion alone was carried out in the same subjects as the control. The release of GIP and GLP-1 (7-36 amide) was suppressed in the hyperglycaemic hyperinsulinaemic state. In protocol 2, 50 g of fat was ingested and insulin was infused at a rate of 0.1 U/kg/h with an artificial pancreas system to obtain the normoglycaemic hyperinsulinaemic state. The release of GIP was significantly suppressed in the normoglycaemic hyperinsulinaemic state as well as in the hyperglycaemic hyperinsulinaemic state. However, the release of GLP-1 (7-36 amide) was suppressed in the hyperglycaemic hyperinsulinaemic state but not in the euglycaemic hyperinsulinaemic state. Thus, it is concluded that insulin inhibits fat-induced GIP, but not GLP-1 (7-36 amide), secretion and that glucose is likely to inhibit GLP-1 (7-36 amide) secretion. Topics: Adult; Analysis of Variance; Blood Glucose; Chromatography, Gel; Dietary Fats; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Hyperglycemia; Injections, Intravenous; Insulin; Peptide Fragments; Peptides | 1991 |