glucagon-like-peptide-1-(7-36)amide has been researched along with Body-Weight* in 10 studies
1 review(s) available for glucagon-like-peptide-1-(7-36)amide and Body-Weight
Article | Year |
---|---|
Taspoglutide: a long acting human glucagon-like polypeptide-1 analogue.
Taspoglutide (R1583/BIM51077) is a new anti diabetic drug from Hoffmann-La Roche. The compound is to be administered as a subcutaneous injection once weekly and is also effective given bi-weekly. It is a long acting 10% formulation of (Aib 8-35) human glucagon-like polypeptide-1 (7 - 36 amides) with 93% homology with the native polypeptide. It activates the glucagon-like polypeptide-1 receptor. Phase III trials are currently in process.. To provide a critical review of taspoglutide based on available published data.. Information provided from the search on Internet has been reviewed. A clinical interpretation is given on a background of practical experience as an investigator in a clinical trial with taspoglutide.. Search on PubMed, EMBASE and Google gave hits on six clinical studies investigating taspoglutide of which the largest accounted for > 50% of the total study population. In addition, some animal studies were identified. Significant improvement on glucose control as well as several metabolic parameters has been shown with taspoglutide.. Data from the clinical trials are interpreted in a medical context. The prospects of taspoglutide in the treatment of diabetes type 2 and metabolic syndrome are discussed.. Taspoglutide is a new activator of the glucagon-like polypeptide-1 receptor. It is effective when injected once weekly and less effective when injected bi-weekly. In addition to its anti diabetic properties, taspoglutide has favorable effects on body weight and significantly reduces three of five diagnostic criteria for metabolic syndrome, namely glucose, waist circumference and fasting triglyceride. Topics: Animals; Blood Glucose; Body Weight; Clinical Trials, Phase III as Topic; Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Insulin-Secreting Cells; Peptide Fragments; Peptides; Randomized Controlled Trials as Topic; Receptors, Glucagon; Treatment Outcome; Triglycerides | 2009 |
2 trial(s) available for glucagon-like-peptide-1-(7-36)amide and Body-Weight
Article | Year |
---|---|
The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans.
Obesity is a major public health issue worldwide. Understanding how the brain controls appetite offers promising inroads toward new therapies for obesity. Peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) are coreleased postprandially and reduce appetite and inhibit food intake when administered to humans. However, the effects of GLP-1 and the ways in which PYY and GLP-1 act together to modulate brain activity in humans are unknown. Here, we have used functional MRI to determine these effects in healthy, normal-weight human subjects and compared them to those seen physiologically following a meal. We provide a demonstration that the combined administration of PYY(3-36) and GLP-1(7-36 amide) to fasted human subjects leads to similar reductions in subsequent energy intake and brain activity, as observed physiologically following feeding. Topics: Adult; Appetite; Body Weight; Brain; Eating; Energy Intake; Fasting; Female; Glucagon-Like Peptide 1; Humans; Immunoassay; Infusions, Intravenous; Magnetic Resonance Imaging; Male; Obesity; Peptide Fragments; Peptide YY; Postprandial Period; Single-Blind Method | 2011 |
Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men.
To investigate whether features of the insulin resistance syndrome are associated with altered incretin responses to food intake.. From a population-based study, 35 men were recruited, representing a wide spectrum of insulin sensitivity and body weight. Each subject underwent a hyperinsulinemic-euglycemic clamp to determine insulin sensitivity. A mixed meal was given, and plasma levels of gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), as well as insulin, glucagon, and glucose were measured.. Insulin resistance was associated with impaired GIP and GLP-1 responses to a mixed meal. The total area under the curve (AUC) of the GIP response after the mixed meal was associated with insulin sensitivity (r = 0.54, P < 0.01). There was a significant difference between the highest and the lowest tertile of insulin sensitivity (P < 0.05). GLP-1 levels 15 min after food intake were significantly lower in the most insulin-resistant tertile compared with the most insulin-sensitive tertile. During the first hour, the AUC of GLP-1 correlated significantly with insulin sensitivity (r = 0.47, P < 0.01). Multiple linear regression analysis showed that insulin resistance, but not obesity, was an independent predictor of these decreased incretin responses.. In insulin resistance, the GIP and GLP-1 responses to a mixed meal are impaired and are related to the degree of insulin resistance. Decreased incretin responsiveness may be of importance for the development of impaired glucose tolerance. Topics: Adult; Biomarkers; Blood Glucose; Blood Pressure; Body Weight; Eating; Gastric Inhibitory Polypeptide; Gastrointestinal Hormones; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Clamp Technique; Humans; Insulin; Insulin Resistance; Male; Middle Aged; Peptide Fragments; Postprandial Period; Protein Precursors; Regression Analysis | 2001 |
7 other study(ies) available for glucagon-like-peptide-1-(7-36)amide and Body-Weight
Article | Year |
---|---|
Oral L-glutamine increases active GLP-1 (7-36) amide secretion and improves glycemic control in stretpozotocin-nicotinamide induced diabetic rats.
L-glutamine is a non-essential amino acid. It decreased blood sugar, stimulated insulin secretion in type 2 diabetic patients. The objective of the present investigation was to evaluate L-glutamine increases glucagon like peptide-1 (GLP-1) (7-36) amide secretion in streptozotocin-nicotinamide (STZ-NTM) induced diabetic Sprague Dawley rats. Molecular docking study was performed to elucidate the molecular basis for GLP-1 receptor agonistic activity. Type 2 diabetes was induced in overnight fasted Sprague Dawley rats pre-treated with nicotinamide (100 mg/kg, i.p.) followed by 20 min after administration of streptozotocin (55 mg/kg, i.p.). The rats were divided into; I - nondiabetic, II - diabetic control, III - sitagliptin (5 mg/kg, p.o.), IV - L-glutamine (250 mg/kg, p.o.), V - L-glutamine (500 mg/kg, p.o.) and VI - L-glutamine (1000 mg/kg, p.o.). The L-glutamine and sitagliptin treatment was 8 week. Plasma glucose was estimated every week. Body weight, food and water intake were recorded daily. Glycosylated haemoglobin, lipid profile, plasma and colonic active (GLP-1) (7-36) amide, mRNA expression of proglucagon GLP-1, plasma and pancreatic insulin, histology of pancreata and biomarkers of oxidative stress (superoxidase dismutase, reduced glutathione, malondialdehyde, glutathione peroxidase, glutathione S transferase) were measured after 8 week. In acute study, the rats were divided into I - glucose (2.5 g/kg, p.o.), II - sitagliptin (5 mg/kg, p.o.), III - L-glutamine (250 mg/kg, p.o.), IV - L-glutamine (500 mg/kg, p.o.) and V - L-glutamine (1000 mg/kg, p.o.). Plasma glucose, active GLP-1 (7-36) amide concentration and insulin levels were measured after glucose loading. The docking data indicated that l-glutamine bind to the GLP-1 receptor. L-glutamine decreased plasma glucose, increased plasma and pancreatic insulin, increased plasma and colonic active GLP-1 (7-36) amide secretion as well as decreased oxidative stress in streptozotocin-nicotinamide induced diabetic rats. Topics: Administration, Oral; Animals; Blood Glucose; Body Weight; Colon; Diabetes Mellitus, Experimental; Drinking; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose Tolerance Test; Glutamine; Glycated Hemoglobin; Insulin; Lipid Metabolism; Male; Molecular Docking Simulation; Niacinamide; Oxidative Stress; Pancreas; Peptide Fragments; Protein Conformation; Pyrazines; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Sitagliptin Phosphate; Triazoles | 2013 |
Cycloart-23-ene-3β, 25-diol stimulates GLP-1 (7-36) amide secretion in streptozotocin-nicotinamide induced diabetic Sprague Dawley rats: a mechanistic approach.
In previous study, we have reported cycloart-23-ene-3β, 25-diol is an active antidiabetic constituent isolated from stem bark of Pongamia pinnata (Linn.) Pierre. The objective of the present investigation was to evaluate cycloart-23-ene-3β, 25-diol stimulates glucagon like peptide-1 (GLP-1) (7-36) amide secretion in streptozotocin-nicotinamide induced diabetic Sprague Dawley rats. Molecular docking studies were performed to elucidate the molecular basis for GLP-1 receptor agonistic activity. Type 2 diabetes was induced in overnight fasted Sprague Dawley rats pre-treated with nicotinamide (100mg/kg, i.p.) followed by administration of streptozotocin (55 mg/kg, i.p.) 20 min after. The rats were divided into following groups; I- non-diabetic, II- diabetic control, III- sitagliptin (5mg/kg, p.o.), IV- cycloart-23-ene-3β, 25-diol (1mg/kg, p.o.). The cycloart-23-ene-3β, 25-diol and sitagliptin treatment was 8 week. Plasma glucose was estimated every week (week 0 to week 8). Body weight, food and water intake were recorded daily. Glycosylated haemoglobin, lipid profile, plasma and colonic active (GLP-1) (7-36) amide, mRNA expression of proglucagnon GLP-1, plasma and pancreatic insulin, histology of pancreata as well as biomarkers of oxidative stress (superoxidase dismutase, reduced glutathione, malondialdehyde, glutathione peroxidase, glutathione S transferase) were measured after 8th week treatment. In acute study, active GLP-1 (7-36) amide release, plasma glucose and insulin were measured during oral glucose tolerance test. The docking data clearly indicated cycloart-23-ene-3β, 25-diol bind to the GLP-1 receptor. It decreased plasma glucose level, increased plasma and pancreatic insulin level as well as increased plasma and colonic active GLP-1 (7-36) amide secretion in streptozotocin-nicotinamide induced diabetic Sprague Dawley rats. Topics: Animals; Biomarkers; Blood Glucose; Body Weight; Diabetes Mellitus, Experimental; Drinking; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucose Tolerance Test; Insulin; Male; Molecular Docking Simulation; Niacinamide; Oxidative Stress; Pancreas; Peptide Fragments; Protein Conformation; Pyrazines; Rats; Rats, Sprague-Dawley; Sitagliptin Phosphate; Time Factors; Triazoles; Triterpenes | 2013 |
Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones secreted in response to meal ingestion, thereby enhancing postprandial insulin secretion. Therefore, an attenuated incretin response could contribute to the impaired insulin responses in patients with diabetes mellitus. The aim of the present investigation was to investigate incretin secretion, in obesity and type 1 and type 2 diabetes mellitus, and its dependence on the magnitude of the meal stimulus. Plasma concentrations of incretin hormones (total, reflecting secretion and intact, reflecting potential action) were measured during two meal tests (260 kcal and 520 kcal) in eight type 1 diabetic patients, eight lean healthy subjects, eight obese type 2 diabetic patients, and eight obese healthy subjects. Both in diabetic patients and in healthy subjects, significant increases in GLP-1 and GIP concentrations were seen after ingestion of both meals. The incretin responses were significantly higher in all groups after the large meal, compared with the small meal, with correspondingly higher C-peptide responses. Both type 1 and type 2 diabetic patients had normal GIP responses, compared with healthy subjects, whereas decreased GLP-1 responses were seen in type 2 diabetic patients, compared with matched obese healthy subjects. Incremental GLP-1 responses were normal in type 1 diabetic patients. Increased fasting concentrations of GIP and an early enhanced postprandial GIP response were seen in obese, compared with lean healthy subjects, whereas GLP-1 responses were the same in the two groups. beta-cell sensitivity to glucose, evaluated as the slope of insulin secretion rates vs. plasma glucose concentration, tended to increase in both type 2 diabetic patients (29%, P = 0.19) and obese healthy subjects (22% P = 0.04) during the large meal, compared with the small meal, perhaps reflecting the increased incretin response. We conclude: 1) that a decreased GLP-1 secretion may contribute to impaired insulin secretion in type 2 diabetes mellitus, whereas GIP and GLP-1 secretion is normal in type 1 diabetic patients; and 2) that it is possible to modulate the beta-cell sensitivity to glucose in obese healthy subjects, and possibly also in type 2 diabetic patients, by giving them a large meal, compared with a small meal. Topics: Adult; Aged; Blood Glucose; Body Weight; C-Peptide; Case-Control Studies; Diabetes Mellitus; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Feeding Behavior; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Insulin; Insulin Secretion; Islets of Langerhans; Male; Middle Aged; Obesity; Peptide Fragments; Protein Precursors; Random Allocation | 2003 |
Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats.
The present study explores the potential utility of peripheral versus central administration of glucagon-like peptide-1 (GLP-1) receptor agonists in the regulation of feeding behavior in Wistar and Zucker obese rats. Acute central (intracerebroventricular [i.c.v.]) and peripheral (subcutaneous [s.c.]) administration of both GLP-1 (7-36) amide and exendin-4 resulted in a reduction in food intake for at least 4 hours, exendin-4 being much more potent than GLP-1 (7-36) amide, especially after peripheral administration. Both Zucker obese rats (fa/fa) and their lean littermates (Fa/-) responded to acute central and peripheral administration of exendin-4. Moreover, in situ hybridization revealed specific labeling for the mRNA for GLP-1 receptors in several brain areas of both the obese and lean rats. The presence of this receptor was also detected by affinity cross-linking assays. Long-term s.c. administration of exendin-4 (1 single injection per day, 1 hour prior to the onset of the dark phase of the cycle) decreased daily food intake and practically blocked weight gain in obese rats. In contrast to previous studies, these findings show that peripheral (s.c.) administration of both GLP-1 receptor agonists also induces satiety and weight loss in rats, and suggest the potential usefulness of exendin-4 as a therapeutic tool for the treatment of diabetes and/or obesity. Topics: Amines; Animals; Appetite; Body Weight; Brain; Diabetes Mellitus; Drinking; Eating; Exenatide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; In Situ Hybridization; Injections, Intraventricular; Injections, Subcutaneous; Male; Obesity; Peptide Fragments; Peptides; Rats; Rats, Wistar; Rats, Zucker; Receptors, Glucagon; RNA, Messenger; Venoms | 2000 |
Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-36) amide or exendin-(9-39) alters body weight in the rat.
Central nervous system glucagon-like peptide-1-(7-36) amide (GLP-1) administration has been reported to acutely reduce food intake in the rat. We here report that repeated intracerebroventricular (i.c.v.) injection of GLP-1 or the GLP-1 receptor antagonist, exendin-(9-39), affects food intake and body weight. Daily i.c.v. injection of 3 nmol GLP-1 to schedule-fed rats for 6 days caused a reduction in food intake and a decrease in body weight of 16 +/- 5 g (P < 0.02 compared with saline-injected controls). Daily i.c.v. administration of 30 nmol exendin-(9-39) to schedule-fed rats for 3 days caused an increase in food intake and increased body weight by 7 +/- 2 g (P < 0.02 compared with saline-injected controls). Twice daily i.c.v. injections of 30 nmol exendin-(9-39) with 2.4 nmol neuropeptide Y to ad libitum-fed rats for 8 days increased food intake and increased body weight by 28 +/- 4 g compared with 14 +/- 3 g in neuropeptide Y-injected controls (P < 0.02). There was no evidence of tachyphylaxis in response to i.c.v. GLP-1 or exendin-(9-39). GLP-1 may thus be involved in the regulation of body weight in the rat. Topics: Animals; Body Weight; Energy Intake; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Injections, Intraventricular; Male; Neurotransmitter Agents; Peptide Fragments; Rats; Rats, Wistar | 1999 |
Effect of chronic central administration of glucagon-like peptide-1 (7-36) amide on food consumption and body weight in normal and obese rats.
Glucagon-like peptide (7-36) amide (GLP-1) acutely inhibits food and water consumption in rats after intracerebroventricular (icv) administration. To assess the potential for desensitization of these effects, we investigated the effects of chronic icv administration of GLP-1 on food consumption and body weight in Sprague-Dawley (SD) rats and Zucker (fa/fa) obese rats. In vitro functional densensitization of the GLP-1 receptor was not observed after overnight exposure of Rin m5F insulinoma cells to GLP-1 at concentrations up to 10 nM. Administration of GLP-1 to SD rats (30 microg icv twice a day for 6 days) resulted in significant reductions in 24-hour food consumption each day (25 +/- 1%). Continuous icv infusion of GLP-1 for 7 and 14 days significantly inhibited cumulative food consumption and reduced body weight in SD rats. In the genetically obese Zucker rat, chronic dosing with GLP-1 (30 microg icv) once a day for 6 days caused significant reductions in food consumption each day and a reduction in body weight. These results indicate that the GLP-1 pathways in the central nervous system controlling food consumption do not desensitize after chronic exposure to GLP-1 and suggest that agonists of the central GLP-1 receptor may be effective agents for the treatment of obesity. Topics: Animals; Body Weight; Eating; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Injections, Intraventricular; Insulinoma; Male; Neurotransmitter Agents; Obesity; Pancreatic Neoplasms; Peptide Fragments; Rats; Rats, Sprague-Dawley; Rats, Zucker; Receptors, Glucagon; Tumor Cells, Cultured | 1998 |
The ageing entero-insular axis.
Ageing is one of the major risk factors for glucose intolerance including impaired glucose tolerance and Type II (non-insulin-dependent) diabetes mellitus. Reduced insulin secretion has been described as part of normal ageing although there is no information on age-related changes in the secretion of the major insulinotropic hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide (7-36 amide) (GLP-1). We assessed the entero-insular axis in 6 young premenopausal and 6 older postmenopausal women following treatment with oral carbohydrate. Insulin and glucose integrated responses were similar in the younger and older groups. Total integrated responses for GIP and GLP-1 were considerably greater in the older subjects. A positive correlation between age and total integrated responses for glucose (r = 0.65; p < 0.02) as well as GLP-1 (r = 0.85; p < 0.001) was seen. We hypothesise that an age-related impairment of insulin secretion to insulinotropic hormones, GIP and GLP-1, contributes to a reduction in glucose tolerance in this age group. The pronounced compensatory increase in postprandial secretion of GIP and GLP-1 provides further evidence not only for the negative feedback relation between incretin and insulin secretion but also for the importance of the entero-insular axis in the regulation of insulin secretion. Topics: Acetaminophen; Adult; Aged; Aging; Blood Glucose; Body Mass Index; Body Weight; Diabetes Mellitus, Type 2; Dietary Carbohydrates; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Intolerance; Humans; Insulin; Insulin Secretion; Peptide Fragments; Postmenopause; Premenopause; Risk Factors | 1998 |