glucagon-like-peptide-1-(7-36)amide and Adenoma--Islet-Cell

glucagon-like-peptide-1-(7-36)amide has been researched along with Adenoma--Islet-Cell* in 3 studies

Other Studies

3 other study(ies) available for glucagon-like-peptide-1-(7-36)amide and Adenoma--Islet-Cell

ArticleYear
Signal transmission after GLP-1(7-36)amide binding in RINm5F cells.
    The American journal of physiology, 1989, Volume: 257, Issue:3 Pt 1

    Glucagon-like peptide-1(7-36)amide [GLP-1(7-36)amide], probably representing an important incretin, binds to receptors on RINm5F cells resulting in an adenosine 3',5'-cyclic monophosphate increase. Guanine nucleotides (GTP, GTP-gamma-S, GDP-beta-S) decreased the binding of GLP-1(7-36)amide to receptors on RINm5F cell membranes. Further analysis revealed that GTP (10(-4) M) decreased the receptor affinity with an increase of the Kd from 2.5 +/- 0.99 x 10(-10) M to 9.43 +/- 2.16 x 10(-10) M. In cross-linking experiments the amount of labeled peptide linked to receptors was reduced in the presence of GTP (10(-4) M). Further studies investigated the involvement of membrane depolarization or changes in the cytosolic free calcium level in the intracellular signaling of GLP-1(7-36)amide-induced insulin secretion. In contrast to fuel and nonfuel secretagogues, GLP-1(7-36)amide did not cause a depolarization of the membrane potential. This was unaffected by various glucose concentrations (0-20 mM) or by previous cell depolarization by D-glyceraldehyde. Similarly, the cytosolic calcium concentration remained unchanged after addition of GLP-1(7-36)amide (10(-12)-10(-8) M). The effect of guanine nucleotides on binding of GLP-1(7-36)amide indicates that the action of the peptide is mediated by the adenylate cyclase system. GLP-1(7-36)amide binding neither changed the membrane potential nor altered the intracellular calcium concentration, making an involvement of the inositol 1,4,5-trisphosphate pathway or an activation of protein kinase C in the postreceptor signaling after GLP-1(7-36)amide binding unlikely.

    Topics: Adenoma, Islet Cell; Animals; Calcium; Cell Line; Cell Membrane; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Insulinoma; Membrane Potentials; Peptide Fragments; Peptides; Rats; Signal Transduction; Tumor Cells, Cultured

1989
Interaction of glucagon-like peptide-1(7-36)amide and somatostatin-14 in RINm5F cells and in the perfused rat pancreas.
    Pancreas, 1989, Volume: 4, Issue:6

    Glucagon-like peptide-1(7-36)amide [GLP-1(7-36)amide], a new important incretin candidate, binds to specific high-affinity receptors on rat insulinoma-derived beta-cells (RINm5F). In the present study, the effect of somatostatin-14 on the GLP-1(7-36)amide-induced insulin release and cAMP generation in this cell line was investigated. Somatostatin did not decrease basal insulin release of RINm5F cells. The GLP-1(7-36)amide-induced insulin release was decreased concentration dependently by somatostatin. Somatostatin, 1 microM reduced the maximally GLP-1(7-36)amide-stimulated (0.1 microM) insulin release to basal insulin levels. The GLP-1(7-36)amide-induced cAMP production was significantly decreased by somatostatin in a concentration-dependent manner. The GLP-1(7-36)amide concentration causing half-maximal cAMP production was 2.98 +/- 1.56 nM. Somatostatin left the EC50 unaltered but decreased the maximal GLP-1(7-36)amide effect for 32% in the presence of 1 nM somatostatin and for 50% at 1 microM. In additional experiments, the interaction of both hormones was evaluated in the perfused pancreas as a nontumor model. Somatostatin (1 nM, 1 microM) inhibited the glucose-induced (6.7 mM) and GLP-1(7-36)amide-potentiated (0.05, 0.5, and 5 nM) insulin release dose dependently. The biphasic pattern of insulin release remained preserved. The GLP-1(7-36)amide-induced insulin release is potently inhibited by somatostatin-14. This effect was demonstrated in different model systems for beta-cell function studies. The present data allow the conclusion that the somatostatin action upon GLP-1(7-36)amide effects is at least partly related to regulation of intracellular cyclic nucleotides.

    Topics: Adenoma, Islet Cell; Animals; Cell Line; Cyclic AMP; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Insulin; Insulinoma; Male; Pancreas; Peptide Fragments; Peptides; Rats; Somatostatin; Tumor Cells, Cultured

1989
Receptors for glucagon-like peptide-1(7-36) amide on rat insulinoma-derived cells.
    The Journal of endocrinology, 1988, Volume: 116, Issue:3

    Specific binding of 125I-labelled glucagon-like peptide-1(7-36)amide (GLP-1(7-36)amide) to rat insulinoma-derived RINm5F cells was dependent upon time and temperature and was proportional to cell concentration. Binding of radioactivity was inhibited in a concentration-dependent manner by GLP-1(7-36) amide consistent with the presence of a single class of binding site with a dissociation constant (Kd) of 204 +/- 8 pmol/l (mean +/- S.E.M.). Binding of the peptide resulted in a dose-dependent increase in cyclic AMP concentrations (half maximal response at 250 +/- 20 pmol/l). GLP-1(1-36)amide was approximately 200 times less potent than GLP-1(7-36)amide in inhibiting the binding of 125I-labelled GLP-1(7-36)amide to the cells (Kd of 45 +/- 6 nmol/l). Binding sites for GLP-1 (7-36)amide were not present on dispersed enterocytes from porcine small intestine.

    Topics: Adenoma, Islet Cell; Animals; Binding, Competitive; Cell Line; Cyclic AMP; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Insulinoma; Intestinal Mucosa; Jejunum; Pancreatic Neoplasms; Peptide Fragments; Peptides; Rats; Receptors, Cell Surface; Receptors, Glucagon

1988