glucagon-like-peptide-1-(7-36) has been researched along with Insulinoma* in 3 studies
3 other study(ies) available for glucagon-like-peptide-1-(7-36) and Insulinoma
Article | Year |
---|---|
PET of insulinoma using ¹⁸F-FBEM-EM3106B, a new GLP-1 analogue.
Derived from endocrine pancreatic beta cells, insulinomas express glucagon-like peptide-1 (GLP-1) receptor with high density and incidence. In this study, we labeled a novel GLP-1 analogue, EM3106B, with (18)F and performed PET imaging to visualize insulinoma tumors in an animal model. A GLP-1 analogue that contains multiple lactam bridges, EM3106B, was labeled with (18)F through a maleimide-based prosthetic group, N-2-(4-(18)F-fluorobenzamido)ethylmaleimide ((18)F-FBEM). The newly developed radiotracer was characterized by cell based receptor-binding assay, cell uptake and efflux assay. The stability in serum was evaluated by radio-HPLC analysis. In vivo PET imaging was performed in nude mice bearing subcutaneous INS-1 insulinoma tumors and MDA-MB-435 tumors of melanoma origin. Ex vivo biodistribution study was performed to confirm the PET imaging data. EM3106B showed high binding affinity (IC(50) = 1.38 nM) and high cell uptake (5.25 ± 0.61% after 120 min incubation). (18)F-FBEM conjugation of EM3106B resulted in high labeling yield (24.9 ± 2.4%) and high specific activity (>75 GBq/μmol at the end of bombardment). EM3106B specifically bound and was internalized by GLP-1R positive INS-1 cells. After intravenous injection of 3.7 MBq (100 μCi) of (18)F-FBEM-EM3106B, the INS-1 tumors were clearly visible with high contrast in relation to the contralateral background on PET images, and tumor uptake of (18)F-FBEM-EM3106B was determined to be 28.5 ± 4.7 and 25.4 ± 4.1% ID/g at 60 and 120 min, respectively. (18)F-FBEM-EM3106B showed low uptake in MB-MDA-435 tumors with low level of GLP-1R expression. Direct tissue sampling biodistribution experiment confirmed high tracer uptake in INS-1 tumors and receptor specificity in both INS-1 tumor and pancreas. In conclusion, (18)F-FBEM-EM3106B exhibited GLP-1R-receptor-specific targeting properties in insulinomas. The favorable characteristics of (18)F-FBEM-EM3106B, such as high specific activity and high tumor uptake, and high tumor to nontarget uptake, demonstrate that it is a promising tracer for clinical insulinoma imaging. Topics: Animals; Biological Transport; Cell Line, Tumor; Contrast Media; Drug Stability; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Insulinoma; Islets of Langerhans; Lactams; Maleimides; Mice; Mice, Nude; Molecular Imaging; Neoplasm Proteins; Peptide Fragments; Peptides; Positron-Emission Tomography; Receptors, Glucagon; Tissue Distribution; Whole Body Imaging | 2011 |
Solubilization of active GLP-1 (7-36)amide receptors from RINm5F plasma membranes.
Glucagon-like peptide-1 (7-36)amide (GLP-1 (7-36)amide) represents a physiologically important incretin in mammals including man. Receptors for GLP-1 (7-36)amide have been described in RINm5F cells. We have solubilized active GLP-1(7-36)amide receptors from RINm5F cell membranes utilizing the detergents octyl-beta-glucoside and CHAPS; Triton X-100 and Lubrol PX were ineffective. Binding of radiolabeled GLP-1(7-36)amide to the solubilized receptor was inhibited concentration-dependently by addition of unlabeled peptide. Scatchard analysis of binding data revealed a single class of binding sites with Kd = 0.26 +/- 0.03 nM and Bmax = 65.4 +/- 21.24 fmol/mg of protein for the membrane-bound receptor and Kd = 22.54 +/- 4.42 microM and Bmax = 3.9 +/- 0.79 pmol/mg of protein for the solubilized receptor. The binding of the radiolabel to the solubilized receptor was dependent both on the concentrations of mono- and divalent cations and the protein/detergent ratio in the incubation buffer. The membrane bound receptor is sensitive to guanine-nucleotides, however neither GTP-gamma-S nor GDP-beta-S affected binding of labeled peptide to solubilized receptor. These data indicate that the solubilized receptor may have lost association with its G-protein. In conclusion, the here presented protocol allows solubilization of the GLP-1(7-36)amide receptor in a functional state, and opens up the possibility for further molecular characterization of the receptor protein. Topics: Animals; Cations; Detergents; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Insulinoma; Pancreatic Neoplasms; Peptide Fragments; Peptides; Protein Binding; Rats; Receptors, Cell Surface; Receptors, Glucagon; Solubility; Thionucleotides; Tumor Cells, Cultured | 1992 |
Glucagonlike peptide-1(7-36)amide suppresses glucagon secretion and decreases cyclic AMP concentration in cultured In-R1-G9 cells.
We previously reported that GLP-1(7-36)amide had glucagonostatic action as well as insulinotropic action in the perfused rat pancreas. In this study, we examined the effect of GLP-1(7-36)amide on glucagon secretion and cAMP concentration in glucagon-secreting cell line, In-R1-G9. GLP-1(7-36)amide (1nM) significantly suppressed glucagon secretion and decreased cAMP concentration in the cells. GLP-1(1-37) did not affect glucagon secretion. It is suggested that inhibitory effect of GLP-1(7-36)amide on glucagon secretion is at least partly mediated by adenylate cyclase system. Topics: 1-Methyl-3-isobutylxanthine; Animals; Clone Cells; Cricetinae; Cyclic AMP; Dose-Response Relationship, Drug; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Insulinoma; Kinetics; Pancreatic Neoplasms; Peptide Fragments; Peptides | 1992 |