Page last updated: 2024-10-27

glimepiride and Hyperglycemia

glimepiride has been researched along with Hyperglycemia in 38 studies

glimepiride: structure given in first source

Hyperglycemia: Abnormally high BLOOD GLUCOSE level.

Research Excerpts

ExcerptRelevanceReference
"The percentage of patients experiencing any hypoglycemia event (ie, symptomatic event or event of plasma glucose concentration <54 mg/dL regardless of symptoms) was lower with saxagliptin compared with glimepiride (5."9.22Effects of Glimepiride versus Saxagliptin on β-Cell Function and Hypoglycemia: A Post Hoc Analysis in Older Patients with Type 2 Diabetes Inadequately Controlled with Metformin. ( Cook, W; Hirshberg, B; Ohman, P; Perl, S; Wei, C, 2016)
"To evaluate the effects of vildagliptin compared to glimepiride on glycemic control, insulin resistance and post-prandial lipemia."9.19Vildagliptin compared to glimepiride on post-prandial lipemia and on insulin resistance in type 2 diabetic patients. ( Bianchi, L; Bonaventura, A; D'Angelo, A; Derosa, G; Fogari, E; Maffioli, P; Romano, D, 2014)
" Fasiglifam/TAK-875, a selective GPR40 agonist, enhances glucose-stimulated insulin secretion and improves hyperglycemia."7.83Fasiglifam/TAK-875, a Selective GPR40 Agonist, Improves Hyperglycemia in Rats Unresponsive to Sulfonylureas and Acts Additively with Sulfonylureas. ( Ito, R; Matsuda, K; Miyawaki, K; Suzuki, M; Takeuchi, K; Tsujihata, Y, 2016)
"To explore the effect of glimepiride on the glucose uptake as well as glucose transporter (GLUT)-1 and GLUT-3 expression levels of rat mandibular osteoblasts in hyperglycemia."7.80[Effect of glimepiride on the glucose uptake of rat mandibular osteoblasts in hyperglycemia]. ( Gu, B; Liu, H; Ma, J; Ma, P; Tan, B, 2014)
"To evaluate the effects of hyperglycemia and glimepiride on proliferation, differentiation and mineralization of rat mandibular osteoblasts to verify the hypothesis of dental implant administration."7.79[Effects of glimepiride on proliferation, differentiation and mineralization of rat mandibular osteoblasts in hyperglycemia]. ( E, LL; Gu, B; Liu, HC; Ma, JL; Ma, P; Tan, BS; Wu, X, 2013)
"The aim of this work was to determine whether glimepiride, a derivate of sulphonylurea of the hypoglycemic effect, influences the level of prooxidative factors and antioxidative enzymes activity in the course of experimental streptozotocin hyperglycemia in rats."7.72The influence of glimepiride on the oxidative state of rats with streptozotocin-induced hyperglycemia. ( Grzymisławski, M; Koźlik, J; Krauss, H; Mikrut, K; Paluszak, J; Piatek, J; Sosnowski, P, 2003)
"The aim of the study was to determine the influence of glimepiride on the binding kinetics of insulin with its skeletal muscle receptor in rats with transient and prolonged hyperglycemia induced by streptozotocin."7.72The influence of glimepiride on the binding kinetics of insulin with its skeletal muscle and liver receptors in rats with short term and prolonged hyperglycemia induced by streptozotocin. ( Grzymisławski, M; Koźlik, J; Krauss, H; Maćkowiak, P; Mikrut, K; Paluszak, J; Piatek, J; Sosnowski, P, 2004)
"Dyslipidemia in patients with type 2 diabetes is characterized by elevated triglyceride levels, decreased high-density lipoprotein (HDL) cholesterol, and a predominance of small dense low-density lipoprotein (LDL) particles."6.76PIOfix-study: effects of pioglitazone/metformin fixed combination in comparison with a combination of metformin with glimepiride on diabetic dyslipidemia. ( Forst, T; Fuchs, W; Lehmann, U; Lobmann, R; Merke, J; Müller, J; Pfützner, A; Schöndorf, T; Tschöpe, D, 2011)
"The percentage of patients experiencing any hypoglycemia event (ie, symptomatic event or event of plasma glucose concentration <54 mg/dL regardless of symptoms) was lower with saxagliptin compared with glimepiride (5."5.22Effects of Glimepiride versus Saxagliptin on β-Cell Function and Hypoglycemia: A Post Hoc Analysis in Older Patients with Type 2 Diabetes Inadequately Controlled with Metformin. ( Cook, W; Hirshberg, B; Ohman, P; Perl, S; Wei, C, 2016)
"To evaluate the effects of vildagliptin compared to glimepiride on glycemic control, insulin resistance and post-prandial lipemia."5.19Vildagliptin compared to glimepiride on post-prandial lipemia and on insulin resistance in type 2 diabetic patients. ( Bianchi, L; Bonaventura, A; D'Angelo, A; Derosa, G; Fogari, E; Maffioli, P; Romano, D, 2014)
"The purpose of this study was to assess the effect of glimepiride on insulin sensitivity and secretion in subjects with type 2 diabetes."5.10Glimepiride improves both first and second phases of insulin secretion in type 2 diabetes. ( Gerich, J; Gooding, WE; Korytkowski, M; Reid, L; Tedesco, MB; Thomas, A, 2002)
" Fasiglifam/TAK-875, a selective GPR40 agonist, enhances glucose-stimulated insulin secretion and improves hyperglycemia."3.83Fasiglifam/TAK-875, a Selective GPR40 Agonist, Improves Hyperglycemia in Rats Unresponsive to Sulfonylureas and Acts Additively with Sulfonylureas. ( Ito, R; Matsuda, K; Miyawaki, K; Suzuki, M; Takeuchi, K; Tsujihata, Y, 2016)
"To explore the effect of glimepiride on the glucose uptake as well as glucose transporter (GLUT)-1 and GLUT-3 expression levels of rat mandibular osteoblasts in hyperglycemia."3.80[Effect of glimepiride on the glucose uptake of rat mandibular osteoblasts in hyperglycemia]. ( Gu, B; Liu, H; Ma, J; Ma, P; Tan, B, 2014)
"To evaluate the effects of hyperglycemia and glimepiride on proliferation, differentiation and mineralization of rat mandibular osteoblasts to verify the hypothesis of dental implant administration."3.79[Effects of glimepiride on proliferation, differentiation and mineralization of rat mandibular osteoblasts in hyperglycemia]. ( E, LL; Gu, B; Liu, HC; Ma, JL; Ma, P; Tan, BS; Wu, X, 2013)
"Gatifloxacin, a commonly prescribed antimicrobial can produce profound hypoglycemia and disturbances in glucose homeostasis especially in diabetes patients on sulphonylureas."3.73Gatifloxacin induced abnormalities in glucose homeostasis in a patient on glimepiride. ( Kesavadev, J; Rasheed, SA, 2006)
"The aim of this work was to determine whether glimepiride, a derivate of sulphonylurea of the hypoglycemic effect, influences the level of prooxidative factors and antioxidative enzymes activity in the course of experimental streptozotocin hyperglycemia in rats."3.72The influence of glimepiride on the oxidative state of rats with streptozotocin-induced hyperglycemia. ( Grzymisławski, M; Koźlik, J; Krauss, H; Mikrut, K; Paluszak, J; Piatek, J; Sosnowski, P, 2003)
"The aim of the study was to determine the influence of glimepiride on the binding kinetics of insulin with its skeletal muscle receptor in rats with transient and prolonged hyperglycemia induced by streptozotocin."3.72The influence of glimepiride on the binding kinetics of insulin with its skeletal muscle and liver receptors in rats with short term and prolonged hyperglycemia induced by streptozotocin. ( Grzymisławski, M; Koźlik, J; Krauss, H; Maćkowiak, P; Mikrut, K; Paluszak, J; Piatek, J; Sosnowski, P, 2004)
" Safety endpoints were adverse events including hypoglycaemia."2.84Efficacy and safety of sitagliptin as compared with glimepiride in Japanese patients with type 2 diabetes mellitus aged ≥ 60 years (START-J trial). ( Ishida, H; Kitaoka, M; Ohsugi, M; Satoh, J; Seino, Y; Shihara, N; Terauchi, Y; Yabe, D; Yamada, Y, 2017)
" The most common treatment-emergent adverse events for dulaglutide 1."2.82A 24-week study to evaluate the efficacy and safety of once-weekly dulaglutide added on to glimepiride in type 2 diabetes (AWARD-8). ( Dungan, KM; Fahrbach, JL; Jiang, HH; Perez Manghi, F; Pintilei, E; Robertson, KE; Shell, J; Weitgasser, R, 2016)
" The insulin dosing algorithm was not sufficient to equalize nocturnal hypoglycaemia between the two insulins."2.80Modulation of insulin dose titration using a hypoglycaemia-sensitive algorithm: insulin glargine versus neutral protamine Hagedorn insulin in insulin-naïve people with type 2 diabetes. ( Bolli, GB; Candelas, C; Dain, MP; Deerochanawong, C; Home, PD; Landgraf, W; Mathieu, C; Pilorget, V; Riddle, MC, 2015)
" Rates of serious adverse events in the albiglutide group were similar to comparison groups."2.79HARMONY 3: 104-week randomized, double-blind, placebo- and active-controlled trial assessing the efficacy and safety of albiglutide compared with placebo, sitagliptin, and glimepiride in patients with type 2 diabetes taking metformin. ( Ahrén, B; Cirkel, DT; Feinglos, MN; Johnson, SL; Perry, C; Stewart, M; Yang, F, 2014)
"Dyslipidemia in patients with type 2 diabetes is characterized by elevated triglyceride levels, decreased high-density lipoprotein (HDL) cholesterol, and a predominance of small dense low-density lipoprotein (LDL) particles."2.76PIOfix-study: effects of pioglitazone/metformin fixed combination in comparison with a combination of metformin with glimepiride on diabetic dyslipidemia. ( Forst, T; Fuchs, W; Lehmann, U; Lobmann, R; Merke, J; Müller, J; Pfützner, A; Schöndorf, T; Tschöpe, D, 2011)
"To generate a mouse model of type 2 diabetes mellitus (DM), male C57BL/6J mice were fed with high-fat diet and injected with streptozotocin."1.51Specific PERK inhibitors enhanced glucose-stimulated insulin secretion in a mouse model of type 2 diabetes. ( Ham, DS; Jung, HS; Kim, JW; Kim, MJ; Kim, MN; Min, SH; Park, KS; Yoon, KH, 2019)
"Obesity is a major cause of type 2 diabetes mellitus (T2DM) in mammals."1.46Development of a Novel Zebrafish Model for Type 2 Diabetes Mellitus. ( Nishimura, N; Shimada, Y; Zang, L, 2017)
"Hyperglycemia is the main feature for the diagnosis of this disease."1.40Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. ( Antonioli, R; Bogo, MR; Bonan, CD; Capiotti, KM; Da Silva, RS; Kist, LW, 2014)

Research

Studies (38)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's4 (10.53)18.2507
2000's9 (23.68)29.6817
2010's25 (65.79)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Ibrahim, MK1
Eissa, IH1
Abdallah, AE1
Metwaly, AM1
Radwan, MM1
ElSohly, MA1
Zang, L1
Shimada, Y1
Nishimura, N1
Home, PD2
Ahrén, B2
Reusch, JEB1
Rendell, M1
Weissman, PN1
Cirkel, DT2
Miller, D1
Ambery, P1
Carr, MC1
Nauck, MA1
Chon, S1
Rhee, SY1
Ahn, KJ1
Baik, SH1
Park, Y1
Nam, MS1
Lee, KW1
Yoo, SJ1
Koh, G1
Lee, DH1
Kim, YS1
Woo, JT1
Kim, MJ1
Kim, MN1
Min, SH1
Ham, DS1
Kim, JW1
Yoon, KH1
Park, KS1
Jung, HS1
Ma, P2
Tan, BS1
Liu, HC1
Gu, B2
Ma, JL1
E, LL1
Wu, X1
Kobayashi, K1
Yokoh, H1
Sato, Y1
Takemoto, M1
Uchida, D1
Kanatsuka, A1
Kuribayashi, N1
Terano, T1
Hashimoto, N1
Sakurai, K1
Hanaoka, H1
Ishikawa, K1
Onishi, S1
Yokote, K1
Capiotti, KM1
Antonioli, R1
Kist, LW1
Bogo, MR1
Bonan, CD1
Da Silva, RS1
Derosa, G1
Bonaventura, A1
Bianchi, L1
Romano, D1
Fogari, E1
D'Angelo, A1
Maffioli, P1
Tan, B1
Liu, H1
Ma, J1
Zhang, Y1
Chi, J1
Wang, W1
Hong, J1
Gu, W1
Wang, B1
Ning, G1
Johnson, SL1
Stewart, M1
Yang, F1
Perry, C1
Feinglos, MN1
Bolli, GB1
Mathieu, C1
Deerochanawong, C1
Landgraf, W1
Candelas, C1
Pilorget, V1
Dain, MP1
Riddle, MC2
Mohamed, MS1
Ali, SA1
Abdelaziz, DH1
Fathallah, SS1
Umayahara, R1
Yonemoto, T1
Kyou, C1
Morishita, K1
Ogawa, T1
Taguchi, Y1
Inoue, T1
Chirila, C1
Zheng, Q1
Davenport, E1
Kaschinski, D1
Pfarr, E1
Hach, T1
Palencia, R1
Nagakura, J1
Yamakawa, T1
Taguri, M1
Tsuchiya, H1
Shigematsu, E1
Suzuki, J1
Morita, S1
Kadonosono, K1
Terauchi, Y2
Pettus, J1
McNabb, B1
Eckel, RH1
Skyler, JS1
Dhalla, A1
Guan, S1
Jochelson, P1
Belardinelli, L1
Henry, RH1
Dungan, KM1
Weitgasser, R1
Perez Manghi, F1
Pintilei, E1
Fahrbach, JL1
Jiang, HH1
Shell, J1
Robertson, KE1
Ito, R1
Tsujihata, Y1
Suzuki, M1
Miyawaki, K1
Matsuda, K1
Takeuchi, K1
Perl, S1
Cook, W1
Wei, C1
Ohman, P1
Hirshberg, B1
Yamada, Y1
Ishida, H1
Ohsugi, M1
Kitaoka, M1
Satoh, J1
Yabe, D1
Shihara, N1
Seino, Y1
Wu, JJ1
Tsai, TF1
Pfützner, A1
Schöndorf, T1
Tschöpe, D1
Lobmann, R1
Merke, J1
Müller, J1
Lehmann, U1
Fuchs, W1
Forst, T1
Flaherty, AM1
Hausenloy, DJ1
Wynne, AM1
Mocanu, MM1
Yellon, DM1
Korytkowski, M1
Thomas, A1
Reid, L1
Tedesco, MB1
Gooding, WE1
Gerich, J1
Krauss, H2
Koźlik, J2
Grzymisławski, M2
Sosnowski, P2
Mikrut, K2
Piatek, J2
Paluszak, J2
Maćkowiak, P1
Khanam, R1
Pillai, KK1
Kesavadev, J1
Rasheed, SA1
Bhattacharya, SK1
Shastri, S1
Mahajan, P1
Madhu, SV1
Tripathi, AK1
Rauniar, GP1
Das, BP1
Paudel, KR1
Kapoor, JR1
Leclercq-Meyer, V1
Malaisse, WJ2
Lebrun, P1
Sener, A1
Clark, HE1
Matthews, DR1
van der Wal, PS1
Draeger, KE1
van Iperen, AM1
Martini, C1
Aarsen, M1
Heine, RJ1

Clinical Trials (11)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Multicenter Study to Determine the Efficacy and Safety of Albiglutide When Used in Combination With Pioglitazone With or Without Metformin in Subjects With Type 2 Diabetes Mellitus[NCT00849056]Phase 3310 participants (Actual)Interventional2009-01-31Completed
A Randomized, Open-label, Parallel-group, Multicenter Study to Determine the Efficacy and Long-term Safety of Albiglutide Compared With Insulin in Subjects With Type 2 Diabetes Mellitus.[NCT00838916]Phase 3779 participants (Actual)Interventional2009-02-28Completed
A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Multicenter Study to Determine the Efficacy and Safety of Two Dose Levels of Albiglutide Compared With Placebo in Subjects With Type 2 Diabetes Mellitus[NCT00849017]Phase 3309 participants (Actual)Interventional2009-01-31Completed
A Randomized, Double-blind, Placebo and Active-Controlled, Parallel-group, Multicenter Study to Determine the Efficacy and Safety of Albiglutide Administered in Combination With Metformin and Glimepiride Compared With Metformin Plus Glimepiride and Placeb[NCT00839527]Phase 3685 participants (Actual)Interventional2009-02-28Completed
A Randomized, Double-Blind, Placebo and Active-Controlled, Parallel-Group, Multicenter Study to Determine the Efficacy and Safety of Albiglutide When Used in Combination With Metformin Compared With Metformin Plus Sitagliptin, Metformin Plus Glimepiride, [NCT00838903]Phase 31,049 participants (Actual)Interventional2009-02-28Completed
Effect of Saxagliptin in Addition to Dapagliflozin and Metformin on Insulin Resistance, Islet Cell Dysfunction, and Metabolic Control in Subjects With Type 2 Diabetes Mellitus on Previous Metformin Treatment[NCT02304081]Phase 464 participants (Actual)Interventional2015-01-31Completed
Exercise Snacks and Glutamine to Improve Glucose Control in Adolescents With Type 1 Diabetes[NCT03199638]14 participants (Actual)Interventional2016-04-01Completed
Superiority of Insulin Glargine Lantus vs. NPH: Treat to Normoglycemia Concept.Effect of Insulin Glargine in Comparison to Insulin NPH in Insulin-nave People With Type 2 Diabetes Mellitus Treated With at Least One OAD and Not Adequately Controlled[NCT00949442]Phase 4708 participants (Actual)Interventional2009-07-31Completed
A 52-Week, Randomised, Double Blind, Active-Controlled, Multi-Centre Phase IIIb/IV Study to Evaluate the Efficacy and Tolerability of Saxagliptin Compared to Glimepiride in Elderly Patients With Type 2 Diabetes Mellitus Who Have Inadequate Glycaemic Contr[NCT01006603]Phase 4957 participants (Actual)Interventional2009-10-31Completed
Efficacy and Safety Comparison of Sitagliptin and Glimepiride in Elderly Japanese Patients With Type 2 Diabetes[NCT01183104]305 participants (Actual)Interventional2010-08-31Completed
Effects of a Pioglitazone/Metformin Fixed Combination in Comparison to Metformin in Combination With Glimepiride on Diabetic Dyslipidemia[NCT00770653]Phase 3305 participants (Actual)Interventional2007-04-30Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Trial Outcomes

Change From Baseline (BL) in Glycosylated Hemoglobin (HbA1c) at Week 52

HbA1c is a form of hemoglobin that is measured primarily to identify the average plasma glucose concentration over a 2- to 3-month period. The BL HbA1c value is defined as the last non-missing value before the start of treatment. Change from BL was calculated as the value at Week 52 minus the value at BL. Based on analysis of covariance (ANCOVA): change = treatment + BL HbA1c + prior myocardial infarction history + age category + region + current antidiabetic therapy. The last observation carried forward (LOCF) method was used to impute missing post-BL HbA1c values; the last non-missing post-BL on-treatment measurement was used to impute the missing measurement. HbA1c values obtained after hyperglycemic rescue were treated as missing and were replaced with pre-rescue values. One Intent-to-Treat (ITT) participant (par.) had all post-BL HbA1c measurements occur after hyperglycemic rescue. This par. is included in the ITT Population counts but did not contribute to this analysis. (NCT00849056)
Timeframe: Baseline and Week 52

InterventionPercentage of HbA1c in the blood (Least Squares Mean)
Placebo + Pioglitazone With or Without Metformin-0.05
Albiglutide 30 mg + Pioglitazone With or Without Metformin-0.81

Change From Baseline in Body Weight at Week 156

The Baseline value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline weight minus the Baseline weight. (NCT00849056)
Timeframe: Baseline and Week 156

InterventionKilograms (Mean)
Placebo + Pioglitazone With or Without Metformin1.50
Albiglutide 30 mg + Pioglitazone With or Without Metformin-0.16

Change From Baseline in Body Weight at Week 52

The Baseline value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline weight minus the Baseline weight. The LOCF method was used to impute missing post-Baseline weight values. Weight values obtained after hyperglycemia rescue were treated as missing and replaced with prerescue values. Based on ANCOVA: change = treatment + Baseline weight + prior myocardial infarction history + age category + region + current antidiabetic therapy. (NCT00849056)
Timeframe: Baseline and Week 52

InterventionKilograms (Least Squares Mean)
Placebo + Pioglitazone With or Without Metformin0.45
Albiglutide 30 mg + Pioglitazone With or Without Metformin0.28

Change From Baseline in Fasting Plasma Glucose (FPG) at Week 156

The Baseline FPG value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline FPG minus the Baseline FPG. (NCT00849056)
Timeframe: Baseline and Week 156

InterventionMillimoles per liter (mmol/L) (Mean)
Placebo + Pioglitazone With or Without Metformin0.03
Albiglutide 30 mg + Pioglitazone With or Without Metformin-1.26

Change From Baseline in Fasting Plasma Glucose (FPG) at Week 52

The FPG test measures blood sugar levels after the participant has not eaten (fasted) for 12 to 14 hours. The Baseline FPG value is the last non-missing value before the start of treatment. The LOCF method was used to impute missing post-Baseline FPG values. FPG values obtained after hyperglycemia rescue were treated as missing and replaced with pre-rescue values. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. Based on ANCOVA: change = treatment + Baseline weight + prior myocardial infarction history + age category + region + current antidiabetic therapy. (NCT00849056)
Timeframe: Baseline and Week 52

InterventionMillimoles per liter (mmol/L) (Least Squares Mean)
Placebo + Pioglitazone With or Without Metformin0.35
Albiglutide 30 mg + Pioglitazone With or Without Metformin-1.28

Time to Hyperglycemia Rescue

Participants who experienced persistent hyperglycemia (high blood glucose) could have qualified for hyperglycemia rescue. The conditions for hyperglycemia rescue were as follows: FPG >=280 milligrams/deciliter (mg/dL) between >=Week 2 and =250 mg/dL between >=Week 4 and =8.5% and a <=0.5% reduction from Baseline between >=Week 12 and =8.5% between >=Week 24 and =8.0% between >= Week 48 and NCT00849056)
Timeframe: From the start of study medication until the end of the treatment (up to Week 156)

InterventionWeeks (Median)
Placebo + Pioglitazone With or Without Metformin52.86
Albiglutide 30 mg + Pioglitazone With or Without MetforminNA

Change From Baseline in HbA1c at Weeks 104 and 156

HbA1c is a form of hemoglobin that is measured primarily to identify the average plasma glucose concentration over a 2- to 3-month period. Baseline HbA1c value is defined as the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. This analysis used observed HbA1c values, excluding those obtained after hyperglycemia rescue; no missing data imputation was performed. (NCT00849056)
Timeframe: Baseline and Weeks 104 and 156

,
InterventionPercentage of HbA1c in the blood (Mean)
Week 104, n= 29, 72Week 156, n=26, 54
Albiglutide 30 mg + Pioglitazone With or Without Metformin-0.92-0.87
Placebo + Pioglitazone With or Without Metformin-0.72-0.50

Number of Participants Who Achieved Clinically Meaningful HbA1c Response Levels of <6.5%, <7%, and <7.5% at Week 156

The number of participants who achieved the HbA1c treatment goal (i.e., HbA1c response levels of <6.5%, <6.5%, and <7.0% at Week 156) were assessed. (NCT00849056)
Timeframe: Week 156

,
InterventionParticipants (Number)
HbA1c <6.5%HbA1c <7%HbA1c <7.5%
Albiglutide 30 mg + Pioglitazone With or Without Metformin203244
Placebo + Pioglitazone With or Without Metformin71217

Number of Participants Who Achieved Clinically Meaningful HbA1c Response Levels of <6.5%, <7%, and <7.5% at Week 52

The number of participants who achieved the HbA1c treatment goal (i.e., HbA1c response levels of <6.5%, <6.5%, and <7.0% at Week 52) were assessed. (NCT00849056)
Timeframe: Week 52

,
InterventionParticipants (Number)
HbA1c <6.5%HbA1c <7%HbA1c <7.5%
Albiglutide 30 mg + Pioglitazone With or Without Metformin376696
Placebo + Pioglitazone With or Without Metformin82244

Change From Baseline (BL) in Glycosylated Hemoglobin (HbA1c) at Week 52

HbA1c is a form of hemoglobin that is measured primarily to identify the average plasma glucose concentration over a 2- to 3-month period. The BL HbA1c value is defined as the last non-missing value before the start of treatment. Change from BL was calculated as the value at Week 52 minus the value at BL. Based on analysis of covariance (ANCOVA): change = treatment + BL HbA1c + prior myocardial infarction history + age category + region + current antidiabetic therapy. Difference of least squares means (albiglutide - insulin glargine) is from the ANCOVA model. The last observation carried forward (LOCF) method was used to impute missing post-Baseline HbA1c values; the last non-missing post-BL on-treatment measurement was used to impute the missing measurement. HbA1c values obtained after hyperglycemic rescue were treated as missing and were replaced with pre-rescue values. (NCT00838916)
Timeframe: Baseline and Week 52

InterventionPercentage of HbA1c in the blood (Least Squares Mean)
Albiglutide 30 mg + Metformin +/- Sulfonylurea-0.67
Insulin Glargine 10 Units + Metformin +/- Sulfonylurea-0.79

Change From Baseline in Body Weight at Week 156

The Baseline value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline weight minus the Baseline weight. (NCT00838916)
Timeframe: Baseline and Week 156

InterventionKilograms (Mean)
Albiglutide 30 mg + Metformin +/- Sulfonylurea-3.47
Insulin Glargine 10 Units + Metformin +/- Sulfonylurea0.90

Change From Baseline in Body Weight at Week 52

The Baseline value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline weight minus the Baseline weight. The LOCF method was used to impute missing post-Baseline weight values. Weight values obtained after hyperglycemia rescue were treated as missing and replaced with prerescue values. Based on ANCOVA: change = treatment + Baseline weight + Baseline HbA1c category + prior myocardial infarction history + age category + region + current antidiabetic therapy. (NCT00838916)
Timeframe: Baseline and Week 52

InterventionKilograms (Least Squares Mean)
Albiglutide 30 mg + Metformin +/- Sulfonylurea-1.05
Insulin Glargine 10 Units + Metformin +/- Sulfonylurea1.56

Change From Baseline in Fasting Plasma Glucose (FPG) at Week 156

The FPG test measures blood sugar levels after the participant has not eaten (fasted) for 12 to 14 hours. The Baseline FPG value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. (NCT00838916)
Timeframe: Baseline and Week 156

InterventionMillimoles per liter (mmol/L) (Mean)
Albiglutide 30 mg + Metformin +/- Sulfonylurea-0.83
Insulin Glargine 10 Units + Metformin +/- Sulfonylurea-2.19

Change From Baseline in Fasting Plasma Glucose (FPG) at Week 52

The FPG test measures blood sugar levels after the participant has not eaten (fasted) for 12 to 14 hours. The Baseline FPG value is the last non-missing value before the start of treatment. The LOCF method was used to impute missing post-Baseline FPG values. FPG values obtained after hyperglycemia rescue were treated as missing and replaced with pre-rescue values. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. Based on ANCOVA: change = treatment + Baseline FPG + Baseline HbA1c category + prior myocardial infarction history + age category + region + current antidiabetic therapy. (NCT00838916)
Timeframe: Baseline and Week 52

InterventionMillimoles per liter (mmol/L) (Least Squares Mean)
Albiglutide 30 mg + Metformin +/- Sulfonylurea-0.87
Insulin Glargine 10 Units + Metformin +/- Sulfonylurea-2.06

Change From Baseline in Glucose Profile Measured by 24-hour Area Under Curve (AUC) at Week 52

A 24-hour glucose profile was collected at Baseline and Week 52 at a subset of sites in a subset of participants per treatment group using the continuous glucose monitoring device. Glucose measurements were obtained at 5 minute increments in the 24-hour period. The area under the curve (AUC) was determined using the trapezoidal method on the measurements obtained during the first 24 hours of continuous monitoring. This analysis used observed values excluding those obtained after hyperglycemia rescue; no missing data imputation was performed. The Baseline value is the last non-missing value before the start of treatment. (NCT00838916)
Timeframe: Baseline and Week 52

InterventionMillimoles per hour per liter (mmol.h/L) (Mean)
Albiglutide 30 mg + Metformin +/- Sulfonylurea0.457
Insulin Glargine 10 Units + Metformin +/- Sulfonylurea-1.657

Change From Baseline in HbA1c at Week 156

HbA1c is a form of hemoglobin that is measured primarily to identify the average plasma glucose concentration over a 2- to 3-month period. Baseline HbA1c value is defined as the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. This analysis used observed HbA1c values, excluding those obtained after hyperglycemia rescue; no missing data imputation was performed. (NCT00838916)
Timeframe: Baseline and Week 156

InterventionPercentage of HbA1c in the blood (Mean)
Albiglutide 30 mg + Metformin +/- Sulfonylurea-0.83
Insulin Glargine 10 Units + Metformin +/- Sulfonylurea-1.00

Time to Hyperglycemia Rescue

Participants who experienced persistent hyperglycemia (high blood glucose) could have qualified for hyperglycemia rescue. The conditions for hyperglycemia rescue were as follows: FPG >=280 milligrams/deciliter (mg/dL) between >=Week 2 and =250 mg/dL between >=Week 4 and =8.5% and a <=0.5% reduction from Baseline between >=Week 12 and =8.5% between >=Week 24 and =8.0% between >= Week 48 and NCT00838916)
Timeframe: From the start of study medication until the end of the treatment (up to Week 156)

InterventionWeeks (Median)
Albiglutide 30 mg + Metformin +/- Sulfonylurea107.57
Insulin Glargine 10 Units + Metformin +/- SulfonylureaNA

Albiglutide Plasma Concentrations at Week 8 and Week 24

Albiglutide plasma concentration data was analyzed at Week 8 pre-dose, Week 8 post-dose, Week 24 pre-dose and Week 24 post-dose. All participants receiving albiglutide were initiated on a 30 mg weekly dosing regimen; however, beginning at Week 4, uptitration of albiglutide was allowed based on glycemic response. As such, albiglutide plasma concentrations achieved at each sampling time represent a mixed population of participants receiving either 30 mg or 50 mg weekly for various durations. (NCT00838916)
Timeframe: Weeks 8 and 24

Interventionnanograms/milliliter (ng/mL) (Mean)
Week 8, Pre-dose, n=408Week 8, Post-dose, n=398Week 24, Pre-dose, n=416Week 24, Post-dose, n=401
Albiglutide 30 mg + Metformin +/- Sulfonylurea1642.831911.352159.302748.15

Number of Participants Who Achieved Clinically Meaningful HbA1c Response Levels of <6.5%, <7%, and <7.5% at Week 156

The number of participants who achieved the HbA1c treatment goal (i.e., HbA1c response levels of <6.5%, <7%, and <7.5% at Week 156) were assessed. (NCT00838916)
Timeframe: Week 156

,
InterventionParticipants (Number)
HbA1c <6.5%HbA1c <7%HbA1c <7.5%
Albiglutide 30 mg + Metformin +/- Sulfonylurea335985
Insulin Glargine 10 Units + Metformin +/- Sulfonylurea184671

Number of Participants Who Achieved Clinically Meaningful HbA1c Response Levels of <6.5%, <7%, and <7.5% at Week 52

The number of participants who achieved the HbA1c treatment goal (i.e., HbA1c response levels of <6.5%, <7%, and <7.5% at Week 52) were assessed. (NCT00838916)
Timeframe: Week 52

,
InterventionParticipants (Number)
HbA1c <6.5%HbA1c <7%HbA1c <7.5%
Albiglutide 30 mg + Metformin +/- Sulfonylurea54156268
Insulin Glargine 10 Units + Metformin +/- Sulfonylurea2578135

Change From Baseline (BL) in Glycosylated Hemoglobin (HbA1c) at Week 52

Glycated hemoglobin (HbA1c) is a form of hemoglobin that is measured primarily to identify the average plasma glucose concentration over a 2- to 3-month period. The BL HbA1c is defined as the last non-missing value before the start of treatment. Change from BL was calculated as the value at Week 52 minus the value at BL. The analysis was performed using an Analysis of Covariance (ANCOVA) model with treatment group, region, history of prior myocardial infarction (yes versus no), and age category (<65 years versus ≥65 years) as factors and Baseline HbA1c as a continuous covariate. The last observation carried forward (LOCF) method was used to impute missing post-BL HbA1c values; the last non-missing post-BL on-treatment measurement was used to impute the missing measurement. HbA1c values obtained after hyperglycemic rescue were treated as missing and were replaced with pre-rescue values. (NCT00849017)
Timeframe: Baseline and Week 52

InterventionPercentage of HbA1c in the blood (Least Squares Mean)
Placebo0.15
Albiglutide 30 mg-0.70
Albiglutide 50 mg-0.89

Change From Baseline in Body Weight at Week 156

The Baseline value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline weight minus the Baseline weight. (NCT00849017)
Timeframe: Baseline and Week 156

InterventionKilograms (Mean)
Placebo-2.91
Albiglutide 30 mg-1.32
Albiglutide 50 mg-2.24

Change From Baseline in Body Weight at Week 52

The Baseline value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline weight minus the Baseline weight. The LOCF method was used to impute missing post-Baseline weight values. Weight values obtained after hyperglycemia rescue were treated as missing and replaced with prerescue values. Based on ANCOVA: change = treatment + Baseline weight + prior myocardial infarction history + age category + region + current antidiabetic therapy. (NCT00849017)
Timeframe: Baseline and Week 52

InterventionKilograms (Least Squares Mean)
Placebo-0.66
Albiglutide 30 mg-0.39
Albiglutide 50 mg-0.86

Change From Baseline in Fasting Plasma Glucose (FPG) at Week 156

The Baseline FPG value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline FPG minus the Baseline FPG. (NCT00849017)
Timeframe: Baseline and Week 156

InterventionMillimoles per liter (mmol/L) (Mean)
Placebo-0.23
Albiglutide 30 mg-1.31
Albiglutide 50 mg-1.83

Change From Baseline in Fasting Plasma Glucose (FPG) at Week 52

The FPG test measures blood sugar levels after the participant has not eaten (fasted) for 12 to 14 hours. The Baseline FPG value is the last non-missing value before the start of treatment. The LOCF method was used to impute missing post-Baseline FPG values. FPG values obtained after hyperglycemia rescue were treated as missing and replaced with pre-rescue values. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. Based on ANCOVA: change = treatment + Baseline weight + prior myocardial infarction history + age category + region + current antidiabetic therapy. (NCT00849017)
Timeframe: Baseline and Week 52

InterventionMillimoles per liter (mmol/L) (Least Squares Mean)
Placebo1.00
Albiglutide 30 mg-0.88
Albiglutide 50 mg-1.38

Change From Baseline in Postprandial Blood Glucose Profile Parameter- 4 Hour Blood Glucose AUC

Changes from Baseline at Week 52 in postprandial parameters after a mixed-meal (MM) tolerance test were analyzed. Post prandial blood glucose parameter analyzed was: 4 hour blood glucose area under urve AUC The AUC was determined using the trapezoidal method using measurements until 4 hours following the meal. The standardized AUC is the total AUC divided by elapsed time. Those parameters were analyzed analogous to the primary endpoint using an ANCOVA model with treatment group as a factor, and corresponding Baseline postprandial profile as a continuous covariate. This analysis used observed values excluding those obtained after hyperglycemia rescue; no missing data imputation was performed. (NCT00849017)
Timeframe: Baseline and Week 52

InterventionNanomoles/Liter (nmol/L) (Least Squares Mean)
Placebo-0.51
Albiglutide 30 mg-1.74
Albiglutide 50 mg-2.05

Change From Baseline in Postprandial Blood Glucose Profile Parameter-4 Hour C-peptide AUC

Changes from Baseline at Week 52 in postprandial parameters after a mixed-meal (MM) tolerance test were analyzed. Post prandial blood glucose parameter analyzed was 4 hour c-peptide AUC. The AUC was determined using the trapezoidal method using measurements until 4 hours following the meal. The standardized AUC is the total AUC divided by elapsed time. Those parameters were analyzed analogous to the primary endpoint using an ANCOVA model with treatment group as a factor, and corresponding Baseline postprandial profile as a continuous covariate. This analysis used observed values excluding those obtained after hyperglycemia rescue; no missing data imputation was performed. (NCT00849017)
Timeframe: Baseline and Week 52

InterventionNanomoles/Liter (nmol/L) (Least Squares Mean)
Placebo0.05
Albiglutide 30 mg Weekly0.03
Albiglutide 50 mg Weekly0.08

Time to Hyperglycemia Rescue

Participants who experienced persistent hyperglycemia (high blood glucose) could have qualified for hyperglycemia rescue. The conditions for hyperglycemia rescue were as follows: FPG >=280 milligrams/deciliter (mg/dL) between >=Week 2 and =250 mg/dL between >=Week 4 and =8.5% and a <=0.5% reduction from Baseline between >=Week 12 and =8.5% between >=Week 24 and =8.0% between >= Week 48 and NCT00849017)
Timeframe: From the start of study medication until the end of the treatment (up to Week 156)

InterventionWeeks (Median)
Placebo49.71
Albiglutide 30 mg118.43
Albiglutide 50 mgNA

Albiglutide Plasma Concentration at Weeks 8 and 24

Albiglutide plasma concentration data was analyzed at Week 8 pre-dose, Week 8 post dose, Week 24 pre-dose and Week 24 post-dose. All participants who received albiglutide were initiated on a 30mg weekly dosing regimen; however, beginning at Week 12, participants in the albiglutide 50 mg treatment group were uptitrated to receive albiglutide 50 mg for the remainder of the study. (NCT00849017)
Timeframe: Weeks 8 and 24

,
Interventionnanograms/milliliter (ng/mL) (Mean)
Week 8 Pre-dose, n=85, 85Week 8 Post-dose, n=87, 80Week 24 Pre-dose, n=79, 74Week 24 Post-dose, n=81, 72
Albiglutide 30 mg1582190019122289
Albiglutide 50 mg1433175930603484

Change From Baseline in HbA1c at Weeks 104 and 156

HbA1c is a form of hemoglobin that is measured primarily to identify the average plasma glucose concentration over a 2- to 3-month period. Baseline HbA1c value is defined as the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. This analysis used observed HbA1c values, excluding those obtained after hyperglycemia rescue; no missing data imputation was performed. (NCT00849017)
Timeframe: Baseline and Weeks 104 and 156

,,
InterventionPercentage of HbA1c in the blood (Mean)
Week 104, n=21, 39, 42Week 156, n=14, 30, 32
Albiglutide 30 mg-0.93-0.96
Albiglutide 50 mg-1.18-1.07
Placebo-0.40-0.61

Change From Baseline in Postprandial Blood Glucose Profile Parameters-4 Hour Insulin AUC and 4 Hour Proinsulin AUC

Changes from Baseline at Week 52 in postprandial parameters after a mixed-meal (MM) tolerance test were analyzed. Post prandial blood glucose parameters analyzed were: 4-hour insulin AUC (4 hr Ins AUC), and 4-hour proinsulin AUC (4 hr pro-Ins AUC). The AUC was determined using the trapezoidal method using measurements until 4 hours following the meal. The standardized AUC is the total AUC divided by elapsed time. Those parameters were analyzed analogous to the primary endpoint using an ANCOVA model with treatment group as a factor, and corresponding Baseline postprandial profile as a continuous covariate. This analysis used observed values excluding those obtained after hyperglycemia rescue; no missing data imputation was performed. (NCT00849017)
Timeframe: Baseline and Week 52

,,
Interventionpicomoles/Liter (pmol/L) (Least Squares Mean)
4hr Ins AUC4hr Pro-Ins AUC
Albiglutide 30 mg2.91.9
Albiglutide 50 mg39.9-10.7
Placebo49.21.0

Number of Participants Who Achieved Clinically Meaningful HbA1c Response Levels of <6.5%, <7%, and <7.5% at Week 156

The number of participants who acheieved the HbA1c treatment goal (i.e., HbA1c response levels of <6.5%, <7%, and <7.5% at Week 156) were assessed. (NCT00849017)
Timeframe: Week 156

,,
InterventionParticipants (Number)
Week 156, HbA1c <6.5%Week 156, HbA1c <7.0%Week 156, HbA1c <7.5%
Albiglutide 30 mg101824
Albiglutide 50 mg111929
Placebo6813

Number of Participants Who Achieved Clinically Meaningful HbA1c Response Levels of <6.5%, <7%, and <7.5% at Week 52

The number of participants who acheieved the HbA1c treatment goal (i.e., HbA1c response levels of <6.5%, <7%, and <7.5% at Week 52) were assessed. (NCT00849017)
Timeframe: Week 52

,,
InterventionParticipants (Number)
Week 52, HbA1c <6.5%Week 52, HbA1c <7.0%Week 52, HbA1c <7.5%
Albiglutide 30 mg254959
Albiglutide 50 mg243962
Placebo102134

Change From Baseline (BL) in Glycosylated Hemoglobin (HbA1c) at Week 52

HbA1c is a form of hemoglobin that is measured primarily to identify the average plasma glucose concentration over a 2- to 3-month period. The BL HbA1c value is defined as the last non-missing value before the start of treatment. Change from BL was calculated as the value at Week 52 minus the value at BL. Based on analysis of covariance (ANCOVA): change = treatment + BL HbA1c + prior myocardial infarction history + age category + region. The last observation carried forward (LOCF) method was used to impute missing post-BL HbA1c values; the last non-missing post-BL on-treatment measurement was used to impute the missing measurement. HbA1c values obtained after hyperglycemic rescue were treated as missing and were replaced with pre-rescue values. Nine par. with post-BL values obtained >14 days after the last dose or after hyperglycemic rescue were included in the analysis population but were not analyzed for this endpoint. (NCT00839527)
Timeframe: Baseline and Week 52

InterventionPercentage of HbA1c in the blood (Least Squares Mean)
Placebo + Metformin + Glimepiride0.33
Pioglitazone + Metformin + Glimepiride-0.80
Albiglutide + Metformin + Glimepiride-0.55

Change From Baseline in Body Weight at Week 52

The Baseline value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline weight minus the Baseline weight. The LOCF method was used to impute missing post-Baseline weight values. Weight values obtained after hyperglycemia rescue were treated as missing and replaced with pre-rescue values. Based on ANCOVA: change = treatment + Baseline weight + Baseline HbA1c category + prior myocardial infarction history + age category + region. (NCT00839527)
Timeframe: Baseline and Week 52

InterventionKilograms (Least Squares Mean)
Placebo + Metformin + Glimepiride-0.40
Pioglitazone + Metformin + Glimepiride4.43
Albiglutide + Metformin + Glimepiride-0.42

Change From Baseline in Fasting Plasma Glucose (FPG) at Week 52

The FPG test measures blood sugar levels after the participant has not eaten (fasted) for 12 to 14 hours. The Baseline FPG value is the last non-missing value before the start of treatment. The LOCF method was used to impute missing post-Baseline FPG values. FPG values obtained after hyperglycemia rescue were treated as missing and replaced with pre-rescue values. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. Based on ANCOVA: change = treatment + Baseline FPG + Baseline HbA1c category + prior myocardial infarction history + age category + region. (NCT00839527)
Timeframe: Baseline and Week 52

InterventionMillimoles per liter (mmol/L) (Least Squares Mean)
Placebo + Metformin + Glimepiride0.64
Pioglitazone + Metformin + Glimepiride-1.74
Albiglutide + Metformin + Glimepiride-0.69

Time to Hyperglycemia Rescue

Participants who experienced persistent hyperglycemia (high blood glucose) could have qualified for hyperglycemia rescue. The conditions for hyperglycemia rescue were as follows: FPG >=280 milligrams/deciliter (mg/dL) between >=Week 2 and =250 mg/dL between >=Week 4 and =8.5% and a <=0.5% reduction from Baseline between >=Week 12 and =8.5% between >=Week 24 and =8.0% between >= Week 48 and NCT00839527)
Timeframe: From the start of study medication until the end of the treatment (up to Week 156)

InterventionWeeks (Median)
Placebo + Metformin + Glimepiride49.57
Pioglitazone + Metformin + GlimepirideNA
Albiglutide + Metformin + Glimepiride137.71

Change From Baseline in Body Weight at Week 104 and Week 156

The Baseline value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline weight minus the Baseline weight. This analysis used observed body weight values excluding those obtained after hyperglycemia rescue; no missing data imputation was performed. (NCT00839527)
Timeframe: Baseline, Week 104, and Week 156

,,
InterventionKilograms (Mean)
Week 104, n=12, 130, 104Week 156, n=9, 90, 71
Albiglutide + Metformin + Glimepiride-0.90-1.53
Pioglitazone + Metformin + Glimepiride6.286.52
Placebo + Metformin + Glimepiride-2.16-4.47

Change From Baseline in FPG at Week 104 and Week 156

The FPG test measures blood sugar levels after the participant has not eaten (fasted) for 12 to 14 hours. The Baseline FPG value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. This analysis used observed FPG values excluding those obtained after hyperglycemia rescue; no missing data imputation was performed. (NCT00839527)
Timeframe: Baseline, Week 104, and Week 156

,,
InterventionMillimoles per liter (mmol/L) (Mean)
Week 104, n=12, 128, 103Week 156, n=9, 88, 71
Albiglutide + Metformin + Glimepiride-0.99-0.88
Pioglitazone + Metformin + Glimepiride-1.98-1.94
Placebo + Metformin + Glimepiride0.43-0.50

Change From Baseline in HbA1c at Week 104 and Week 156

HbA1c is a form of hemoglobin that is measured primarily to identify the average plasma glucose concentration over a 2- to 3-month period. The Baseline HbA1c value is defined as the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. This analysis used observed HbA1c values, excluding those obtained after hyperglycemia rescue; no missing data imputation was performed. (NCT00839527)
Timeframe: Baseline, Week 104, and Week 156

,,
InterventionPercentage of HbA1c in the blood (Mean)
Week 104, n=12, 130, 104Week 156, n=9, 89, 71
Albiglutide + Metformin + Glimepiride-0.76-0.46
Pioglitazone + Metformin + Glimepiride-1.09-0.97
Placebo + Metformin + Glimepiride-0.32-0.10

Number of Participants Who Achieved Clinically Meaningful HbA1c Response Levels of <6.5%, <7%, and <7.5% at Week 156

The number of participants who acheieved the HbA1c treatment goal (i.e., HbA1c response levels of <6.5%, <7%, and <7.5% at Week 156) was assessed. (NCT00839527)
Timeframe: Week 156

,,
InterventionParticipants (Number)
HbA1c <6.5%HbA1c <7.0%HbA1c <7.5%
Albiglutide + Metformin + Glimepiride162645
Pioglitazone + Metformin + Glimepiride234468
Placebo + Metformin + Glimepiride135

Number of Participants Who Achieved Clinically Meaningful HbA1c Response Levels of <6.5%, <7%, and <7.5% at Week 52

The number of participants who acheieved the HbA1c treatment goal (i.e., HbA1c response levels of <6.5%, <7%, and <7.5% at Week 52) was assessed. Values were carried forward for participants who were rescued or discontinued from active treatment before Week 52. (NCT00839527)
Timeframe: Week 52

,,
InterventionParticipants (Number)
HbA1c <6.5%HbA1c <7.0%HbA1c <7.5%
Albiglutide + Metformin + Glimepiride2779126
Pioglitazone + Metformin + Glimepiride3794150
Placebo + Metformin + Glimepiride41019

Change From Baseline (BL) in Glycosylated Hemoglobin (HbA1c) at Week 104

HbA1c is a form of hemoglobin that is measured primarily to identify the average plasma glucose concentration over a 2- to 3-month period. The BL HbA1c value is defined as the last non-missing value before the start of treatment. Change from BL was calculated as the value at Week 104 minus the value at BL. Based on analysis of covariance (ANCOVA): change = treatment + BL HbA1c + prior myocardial infarction history + age category + region. Difference of least squares means (albiglutide - placebo, albiglutide - sitagliptin, albiglutide - glimepiride) is from the ANCOVA model. The last observation carried forward (LOCF) method was used to impute missing post-Baseline HbA1c values; the last non-missing post-BL on-treatment measurement was used to impute the missing measurement. HbA1c values obtained after hyperglycemic rescue were treated as missing and were replaced with pre-rescue values. (NCT00838903)
Timeframe: Baseline and Week 104

InterventionPercentage of HbA1c in the blood (Least Squares Mean)
Placebo Plus Metformin0.27
Sitagliptin 100 mg Plus Metformin-0.28
Glimepiride 2 mg Plus Metformin-0.36
Albiglutide 30 mg Plus Metformin-0.63

Change From Baseline in Body Weight at Week 104

The Baseline value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline weight minus the Baseline weight. The LOCF method was used to impute missing post-Baseline weight values. Weight values obtained after hyperglycemia rescue were treated as missing and replaced with prerescue values. Based on ANCOVA: change = treatment + Baseline weight + Baseline HbA1c category + prior myocardial infarction history + age category + region. (NCT00838903)
Timeframe: Baseline and Week 104

InterventionKilograms (Least Squares Mean)
Placebo Plus Metformin-1.00
Sitagliptin 100 mg Plus Metformin-0.86
Glimepiride 2 mg Plus Metformin1.17
Albiglutide 30 mg Plus Metformin-1.21

Change From Baseline in Body Weight at Week 156

The Baseline value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline weight minus the Baseline weight. This analysis used observed body weight values excluding those obtained after hyperglycemia rescue; no missing data imputation was performed. (NCT00838903)
Timeframe: Baseline and Week 156

InterventionKilograms (Mean)
Placebo Plus Metformin-3.61
Sitagliptin 100 mg Plus Metformin-2.05
Glimepiride 2 mg Plus Metformin0.98
Albiglutide 30 mg Plus Metformin-2.31

Change From Baseline in Fasting Plasma Glucose (FPG) at Week 104

The FPG test measures blood sugar levels after the participant has not eaten (fasted) for 12 to 14 hours. The Baseline FPG value is the last non-missing value before the start of treatment. The LOCF method was used to impute missing post-Baseline FPG values. FPG values obtained after hyperglycemia rescue were treated as missing and replaced with pre-rescue values. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. Based on ANCOVA: change = treatment + Baseline FPG + Baseline HbA1c category + prior myocardial infarction history + age category + region. (NCT00838903)
Timeframe: Baseline and Week 104

InterventionMillimoles per liter (mmol/L) (Least Squares Mean)
Placebo Plus Metformin0.55
Sitagliptin 100 mg Plus Metformin-0.12
Glimepiride 2 mg Plus Metformin-0.41
Albiglutide 30 mg Plus Metformin-0.98

Change From Baseline in FPG at Week 156

The FPG test measures blood sugar levels after the participant has not eaten (fasted) for 12 to 14 hours. The Baseline FPG value is the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. This analysis used observed FPG values excluding those obtained after hyperglycemia rescue; no missing data imputation was performed. (NCT00838903)
Timeframe: Baseline and Week 156

InterventionMillimoles per liter (mmol/L) (Mean)
Placebo Plus Metformin-0.11
Sitagliptin 100 mg Plus Metformin-0.50
Glimepiride 2 mg Plus Metformin-0.71
Albiglutide 30 mg Plus Metformin-1.30

Change From Baseline in HbA1c at Week 156

HbA1c is a form of hemoglobin that is measured primarily to identify the average plasma glucose concentration over a 2- to 3-month period. Baseline HbA1c value is defined as the last non-missing value before the start of treatment. Change from Baseline was calculated as the post-Baseline value minus the Baseline value. This analysis used observed HbA1c values, excluding those obtained after hyperglycemia rescue; no missing data imputation was performed . (NCT00838903)
Timeframe: Baseline and Week 156

InterventionPercentage of HbA1c in the blood (Mean)
Placebo Plus Metformin-0.46
Sitagliptin 100 mg Plus Metformin-0.56
Glimepiride 2 mg Plus Metformin-0.59
Albiglutide 30 mg Plus Metformin-0.88

Time to Hyperglycemia Rescue

Participants who experienced persistent hyperglycemia (high blood glucose) could have qualified for hyperglycemia rescue.The conditions for hyperglycemic rescue were as follows: FPG >=280 milligrams/deciliter (mg/dL) between >=Week 2 and =250 mg/dL between >=Week 4 and =8.5% and a <=0.5% reduction from Baseline between >=Week 12 and =8.5% between >=Week 24 and =8.0% between >= Week 48 and NCT00838903)
Timeframe: From the start of study medication until the end of the treatment (up to Week 156)

InterventionWeeks (Median)
Placebo Plus Metformin67.71
Sitagliptin 100 mg Plus MetforminNA
Glimepiride 2 mg Plus MetforminNA
Albiglutide 30 mg Plus MetforminNA

Number of Participants Who Achieved Clinically Meaningful HbA1c Response Levels of <6.5%, <7%, and <7.5% at Week 104

The number of participants who achieved the HbA1c treatment goal (i.e., HbA1c response levels of <6.5%, <7%, and <7.5% at Week 52) were assessed. (NCT00838903)
Timeframe: Week 104

,,,
InterventionParticipants (Number)
HbA1c <6.5%HbA1c <7.0%HbA1c <7.5%
Albiglutide 30 mg Plus Metformin50113172
Glimepiride 2 mg Plus Metformin4094147
Placebo Plus Metformin71527
Sitagliptin 100 mg Plus Metformin4594132

Number of Participants Who Achieved Clinically Meaningful HbA1c Response Levels of <6.5%, <7%, and <7.5% at Week 156

The number of participants who achieved the HbA1c treatment goal (i.e., HbA1c response levels of <6.5%, <7%, and <7.5% at Week 156) were assessed. (NCT00838903)
Timeframe: Week 156

,,,
InterventionParticipants (Number)
HbA1c <6.5%HbA1c <7.0%HbA1c <7.5%
Albiglutide 30 mg Plus Metformin316990
Glimepiride 2 mg Plus Metformin154469
Placebo Plus Metformin4713
Sitagliptin 100 mg Plus Metformin234469

Change in Percent of Blood Glucose (BG) Within Target

Percent of BG between 70 and 180 mg/dL, as measured using Continuous Glucose Monitor (CGM) (NCT03199638)
Timeframe: baseline vs. at 3 months

,
InterventionPercentage of Blood Glucose (Mean)
baselineat 3 months
an Exercise + Glutamine Group57.669.2
an Exercise Group63.746.4

Change in the Mean Amplitude of Glycemic Excursions (MAGE)

MAGE describes the average amplitude of glycemic variations measured using continuous glucose monitoring (CGM) (NCT03199638)
Timeframe: before vs. at 3 months

,
Interventionmg/dL (Mean)
baselineat 3 months
an Exercise + Glutamine Group108123
an Exercise Group129139

HbA1c, Glycated Hemoglobin

change in glycated hemoglobin (NCT03199638)
Timeframe: baseline vs. at 3 months

,
Interventionpercentage of total hemoglobin (Mean)
baselineat 3 months
an Exercise + Glutamine Group8.38.4
an Exercise Group7.98.0

Insulin Dose

Change in insulin dose (Units/kg/day) used at home (NCT03199638)
Timeframe: baseline vs. at 3 months

,
InterventionUnits/kg/day (Mean)
baselineat 3 months
an Exercise + Glutamine Group0.981.0
an Exercise Group1.00.8

Insulin Sensitivity Score (ISS)

Change in insulin sensitivity score, determined using SEARCH ISS model published equation: logeIS = 4.64725 - 0.02032 × (waist, cm) - 0.09779 × (HbA1c, %) - 0.00235 × (Triglycerides, mg/dL). The range of ISS scores is between 1-15. Higher scores imply a better insulin sensistivity. (NCT03199638)
Timeframe: baseline vs. at 3 months

,
Interventionscore on a scale (Mean)
baselineat 3 months
an Exercise + Glutamine Group2.102.16
an Exercise Group2.172.20

Percent Blood Glucose (BG) >180

Change in Percent of BG above 180 mg, as determined using Continuous Glucose Monitor (CGM) (NCT03199638)
Timeframe: baseline vs. at 3 months

,
InterventionPercentage of Blood Glucose (Mean)
baslineat 3 months
an Exercise + Glutamine Group39.426.6
an Exercise Group29.146.4

Percent of BG <70 mg/dL

Change in Percent of BG below 70 mg/dL, as determined by Continuous Glucose Monitor (CGM) (NCT03199638)
Timeframe: baseline vs. at 3 months

,
InterventionPercentage of Blood Glucose (Mean)
baselineat 3 months
an Exercise + Glutamine Group3.14.4
an Exercise Group7.27.2

Change From Baseline to Week 52 in Fasting Plasma Glucose (FPG)

Measured as the difference between the last on-treatment value (defined as obtained before or on the first day after the last dosing date)and the last pre-randomisation fasting plasma glucose value, as determined by central laboratory. Full analysis set. (NCT01006603)
Timeframe: From week 0 to week 52

Interventionmmol/L (Mean)
Saxagliptin 5 mg-0.73
Glimepiride 1 - 6 mg-1.29

Change From Baseline to Week 52 in HbA1c.

Measured as the difference between the last on-treatment value (defined as obtained before or on the 8th day after the last dosing date), and the last pre-randomisation HbA1c value, as determined by central laboratory. Full analysis set. (NCT01006603)
Timeframe: From week 0 to week 52.

Intervention% of glycosylated hemoglobin (Mean)
Saxagliptin 5 mg-0.44
Glimepiride 1 - 6 mg-0.64

Change From Baseline to Week 52 in Insulin

Measured as the difference between the last on-treatment value (defined as obtained before or on the first day after the last dosing date) and the last pre-randomisation fasting plasma insulin value, as determined by central laboratory. Full analysis set. (NCT01006603)
Timeframe: From week 0 to week 52

InterventionµU/mL (Mean)
Saxagliptin 5 mg-2.0
Glimepiride 1 - 6 mg-0.6

Change From Baseline to Week 52 in β-cell Function (as Measured by Homeostasis Model Assessment-β [HOMA-β]

β-cell function as estimated by the homeostasis model assessment (HOMA) model. Value is derived from FPG and fasting insulin; fasting insulin values below 2.074 μU/mL or above 57.595 μU/mL and FPG values below 3 mmol/L or above 25 mmol/L are excluded (as restricted by the calculation method used). Full analysis set. (NCT01006603)
Timeframe: From week 0 to week 52

Interventionpercentage of change from baseline (Mean)
Saxagliptin 5 mg3.83
Glimepiride 1 - 6 mg16.22

Proportion of Patients Achieving a Therapeutic Glycaemic Response at Week 52 Defined as HbA1c <7.0%

Proportion of patients with their last on-treatment value (defined as obtained before or on the 8th day after the last dosing date), as determined by central laboratory, below the specified limits. Full analysis set. (NCT01006603)
Timeframe: From week 0 to week 52

Interventionpercentage of responders (Number)
Saxagliptin 5 mg44.7
Glimepiride 1 - 6 mg54.7

Proportion of Patients Having Experienced at Least One Hypoglycaemic Event (Confirmed or Severe) Over the 52-week Double-blind Treatment Period.

"Hypoglyceamic event defined as, Confirmed hypoglycaemia: any event defined as either a symptomatic event with blood glucose level <3 mmol/L (<54 mg/dL) and no need for external assistance, or an asymptomatic blood glucose measurement <3 mmol/L (<54 mg/dL).~Major (or severe) hypoglycaemia: symptomatic events requiring external assistance due to severe impairment in consciousness or behaviour, with or without blood glucose level <3 mmol/L (<54 mg/dL), but with prompt recovery after glucose or glucagon administration. These events may be associated with sufficient neuroglycopenia to induce seizure or coma. Plasma glucose measurements may not be available during such an event, but neurological recovery, attributable to the restoration of plasma glucose to normal, was considered sufficient evidence that the event was induced by a low plasma glucose concentration. Safety analysis set." (NCT01006603)
Timeframe: From week 0 to week 52.

Interventionpercentage of patients (Number)
Saxagliptin 5 mg1.1
Glimepiride 1 - 6 mg15.3

Proportion of Patients Reaching HbA1c <7% After 52 Weeks of Treatment Without Confirmed or Severe Hypoglycaemia.

"Defined as obtained on or before the 8th day after the last dosing day, as determined by central laboratory. Safety analysis set.~Confirmed hypoglycaemia defined as: any event defined as either a symptomatic event with blood glucose level <3 mmol/L (<54 mg/dL) and no need for external assistance, or an asymptomatic blood glucose measurement <3 mmol/L (<54 mg/dL).~Major (or severe) hypoglycaemia defined as: symptomatic events requiring external assistance due to severe impairment in consciousness or behaviour, with or without blood glucose level <3 mmol/L (<54 mg/dL), but with prompt recovery after glucose or glucagon administration. These events may be associated with sufficient neuroglycopenia to induce seizure or coma. Plasma glucose measurements may not be available during such an event, but neurological recovery, attributable to the restoration of plasma glucose to normal, was considered sufficient evidence that the event was induced by a low plasma glucose concentration." (NCT01006603)
Timeframe: From week 0 to week 52.

,
Interventionpercentage of participants (Number)
All patientspatients aged <75 years (n=217, n=216)patients aged ≥75 years (n=142, n=143)
Glimepiride 1 - 6 mg38.233.345.5
Saxagliptin 5 mg37.939.235.9

Change From Baseline in Body Weight at 52 W

(NCT01183104)
Timeframe: Baseline and 52 W

Interventionkg (Mean)
Sitagliptin-0.367
Glimepiride0.309

Change From Baseline in HbA1c at 52 W

(NCT01183104)
Timeframe: Baseline and 52 W

Interventionpercent (Least Squares Mean)
Sitagliptin-0.66
Glimepiride-0.77

Change From Baseline in HOMA-β at 52 W

β cell function is measured by the Homeostatic Model Assessment(HOMA-β). HOMA β = [20 x fasting insulin (μU/mL)] / [fasting plasma glucose (mmol/L) - 3.5] (NCT01183104)
Timeframe: Baseline and 52 W

Interventionpercent (Mean)
Sitagliptin10.2
Glimepiride23.7

Change From Baseline in Insulin/Proinsulin Ratio at 52 W

(NCT01183104)
Timeframe: Baseline and 52 W

Interventionratio (Mean)
Sitagliptin-0.049
Glimepiride-0.002

Number of Participants With Hypoglycaemia

(NCT01183104)
Timeframe: From baseline to 52 W

InterventionParticipants (Count of Participants)
Sitagliptin7
Glimepiride23

The Number of Participants Achieving HbA1c < 6.9 %

(NCT01183104)
Timeframe: 52 W

InterventionParticipants (Count of Participants)
Sitagliptin89
Glimepiride86

Change From Baseline in Adiponectin.

The change between Adiponectin collected at week 24 or final visit and Adiponectin collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionμg/mL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID6.79
Glimepiride 2 mg and Metformin 850 mg BID0.72

Change From Baseline in Diastolic Blood Pressure.

The change between Diastolic Blood Pressure measured at week 24 or final visit and Diastolic Blood Pressure measured at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

InterventionmmHg (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-1.3
Glimepiride 2 mg and Metformin 850 mg BID-0.1

Change From Baseline in E-Selectin.

The change between the value of E-Selectin collected at week 24 or final visit and E-Selectin collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionng/mL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-3.7
Glimepiride 2 mg and Metformin 850 mg BID-0.5

Change From Baseline in Erythrocyte Deformability (0.30%).

The change between the 0.30 percent value of Erythrocyte (Red Blood Cell) Deformability collected at week 24 or final visit and Erythrocyte Deformability collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionpercent (Mean)
Pioglitazone 15 mg and Metformin 850 mg BID1.3
Glimepiride 2 mg and Metformin 850 mg BID-0.4

Change From Baseline in Erythrocyte Deformability (0.60%)

The change between the 0.60 percent value of Erythrocyte (Red Blood Cell) Deformability collected at week 24 or final visit and Erythrocyte Deformability collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionpercent (Mean)
Pioglitazone 15 mg and Metformin 850 mg BID2.4
Glimepiride 2 mg and Metformin 850 mg BID-0.5

Change From Baseline in Erythrocyte Deformability (1.20).

The change between the 1.20 percent value of Erythrocyte (Red Blood Cell) Deformability collected at week 24 or final visit and Erythrocyte Deformability collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionpercent (Mean)
Pioglitazone 15 mg and Metformin 850 mg BID3.2
Glimepiride 2 mg and Metformin 850 mg BID-1.1

Change From Baseline in Erythrocyte Deformability (12.00).

The change between the 12.00 percent value of Erythrocyte (Red Blood Cell) Deformability collected at week 24 or final visit and Erythrocyte Deformability collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionpercent (Mean)
Pioglitazone 15 mg and Metformin 850 mg BID2.7
Glimepiride 2 mg and Metformin 850 mg BID-1.3

Change From Baseline in Erythrocyte Deformability (3.00).

The change between the 3.00 percent value of Erythrocyte (Red Blood Cell) Deformability collected at week 24 or final visit and Erythrocyte Deformability collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionpercent (Mean)
Pioglitazone 15 mg and Metformin 850 mg BID3.3
Glimepiride 2 mg and Metformin 850 mg BID-.15

Change From Baseline in Erythrocyte Deformability (30.00).

The change between the 30.00 percent value of Erythrocyte (Red Blood Cell) Deformability collected at week 24 or final visit and Erythrocyte Deformability collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionpercent (Mean)
Pioglitazone 15 mg and Metformin 850 mg BID2.5
Glimepiride 2 mg and Metformin 850 mg BID-1.3

Change From Baseline in Erythrocyte Deformability (6.00).

The change between the 6.00 percent value of Erythrocyte (Red Blood Cell) Deformability collected at week 24 or final visit and Erythrocyte Deformability collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionpercent (Mean)
Pioglitazone 15 mg and Metformin 850 mg BID3.1
Glimepiride 2 mg and Metformin 850 mg BID-1.4

Change From Baseline in Erythrocyte Deformability (60.00).

The change between the 60.00 percent value of Erythrocyte (Red Blood Cell) Deformability collected at week 24 or final visit and Erythrocyte Deformability collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionpercent (Mean)
Pioglitazone 15 mg and Metformin 850 mg BID2.7
Glimepiride 2 mg and Metformin 850 mg BID-1.3

Change From Baseline in Fasting Glucose.

The change between Fasting Glucose collected at week 24 or final visit and Fasting Glucose collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionmg/dL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-21.6
Glimepiride 2 mg and Metformin 850 mg BID-21.1

Change From Baseline in Fasting Intact Proinsulin.

The change between Fasting Intact Proinsulin collected at week 24 or final visit and Fasting Intact Proinsulin collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionpmol/L (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-5.18
Glimepiride 2 mg and Metformin 850 mg BID-0.11

Change From Baseline in Glycosylated Hemoglobin.

The change between the value of Glycosylated Hemoglobin (the concentration of glucose bound to hemoglobin as a percent of the absolute maximum that can be bound) collected at week 24 or final visit and Glycosylated Hemoglobin collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionmg/dL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-0.83
Glimepiride 2 mg and Metformin 850 mg BID-0.95

Change From Baseline in High Sensitivity C-reactive Protein (≤ 10 mg/L).

The change between the value of High Sensitivity C-reactive Protein less than or equal to 10 mg/L collected at week 24 or final visit and High Sensitivity C-reactive Protein less than or equal to 10 mg/L collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionmg/L (Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-0.87
Glimepiride 2 mg and Metformin 850 mg BID0.00

Change From Baseline in High Sensitivity C-reactive Protein (Original).

The change between the value of High Sensitivity C-reactive Protein collected at week 24 or final visit and High Sensitivity C-reactive Protein collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionmg/L (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-0.21
Glimepiride 2 mg and Metformin 850 mg BID-0.04

Change From Baseline in High-Density Lipoprotein Cholesterol.

The change between HDL-Cholesterol collected at week 24 or final visit and HDL-Cholesterol collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionmg/dL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID3.3
Glimepiride 2 mg and Metformin 850 mg BID-0.4

Change From Baseline in High-Density Lipoprotein/Low-Density Lipoprotein Ratio.

The change between High-Density Lipoprotein/Low-Density Lipoprotein Ratio collected at week 24 or final visit and High-Density Lipoprotein/Low-Density Lipoprotein Ratio collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionmg/dL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID0.1
Glimepiride 2 mg and Metformin 850 mg BID0.3

Change From Baseline in Low-Density Lipoprotein Cholesterol.

The change between Low-Density Lipoprotein Cholesterol collected at week 24 or final visit and Low-Density Lipoprotein Cholesterol collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionmg/dL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID9.7
Glimepiride 2 mg and Metformin 850 mg BID11.2

Change From Baseline in Low-Density Lipoprotein Subfractions.

The change between the value of Low-Density Lipoprotein Subfractions collected at week 24 or final visit and Low-Density Lipoprotein Subfractions collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionmg/dL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID6.2
Glimepiride 2 mg and Metformin 850 mg BID6.1

Change From Baseline in Matrix Metallo Proteinase-9.

The change between the value of Baseline in Matrix Metallo Proteinase-9 collected at week 24 or final visit and Baseline in Matrix Metallo Proteinase-9 collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionng/mL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID31.4
Glimepiride 2 mg and Metformin 850 mg BID51.6

Change From Baseline in Nitrotyrosine.

The change between the value of Nitrotyrosine collected at week 24 or final visit and Nitrotyrosine collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionnmol/L (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-2.7
Glimepiride 2 mg and Metformin 850 mg BID32.5

Change From Baseline in Platelet Function.

The change between the value of Platelet Function by PFA 100 collected at week 24 or final visit and Platelet Function by PFA 100 collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionsec (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-30.3
Glimepiride 2 mg and Metformin 850 mg BID-1.0

Change From Baseline in Soluble CD40 Ligand.

The change between the value of Soluble CD40 Ligand collected at week 24 or final visit and Soluble CD40 Ligand collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionpg/mL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-40.7
Glimepiride 2 mg and Metformin 850 mg BID102.4

Change From Baseline in Soluble Intracellular Adhesion Molecule.

The change between the value of Baseline in Soluble Intracellular Adhesion molecule at week 24 or final visit and Baseline in Soluble Intracellular Adhesion molecule collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionng/mL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-13.0
Glimepiride 2 mg and Metformin 850 mg BID-3.2

Change From Baseline in Soluble Vascular Cell Adhesion Molecule.

The change between the value of Soluble Vascular Cell Adhesion Molecule collected at week 24 or final visit and Soluble Vascular Cell Adhesion Molecule collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionng/mL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID11.6
Glimepiride 2 mg and Metformin 850 mg BID3.3

Change From Baseline in Systolic Blood Pressure.

The change between Systolic Blood Pressure measured at week 24 or final visit and Systolic Blood Pressure measured at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

InterventionmmHg (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-2.5
Glimepiride 2 mg and Metformin 850 mg BID0.5

Change From Baseline in Thromboxane B2.

The change between the value of Thromboxane B2 collected at week 24 or final visit and Thromboxane B2 collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionpg/mL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-216.4
Glimepiride 2 mg and Metformin 850 mg BID527.8

Change From Baseline in Triglycerides.

The change between the value of Triglycerides collected at week 24 or final visit and Triglycerides collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionmg/dL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-40.9
Glimepiride 2 mg and Metformin 850 mg BID-16.7

Change From Baseline in Von-Willebrand Factor.

The change between the value of Von-Willebrand Factor collected at week 24 or final visit and Von-Willebrand Factor collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionpercent (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID-19.5
Glimepiride 2 mg and Metformin 850 mg BID1.4

Intake of Study Medication Greater Than 80% and Less Than 120%.

The change between the Intake of study medication greater than 80% at week 24 or final visit and Baseline and the Intake of study medication greater than 80% at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionparticipants (Number)
Pioglitazone 15 mg and Metformin 850 mg BID136
Glimepiride 2 mg and Metformin 850 mg BID137

The Mean Increase From Baseline in High-Density Lipoprotein Cholesterol.

The increase in High-Density Lipoprotein (HDL) Cholesterol collected at week 24 or final visit and HDL-Cholesterol collected at baseline. (NCT00770653)
Timeframe: Baseline and Week 24.

Interventionmg/dL (Least Squares Mean)
Pioglitazone 15 mg and Metformin 850 mg BID3.2
Glimepiride 2 mg and Metformin 850 mg BID-0.3

Reviews

2 reviews available for glimepiride and Hyperglycemia

ArticleYear
Management of diabetes and pancreatic cancer.
    Oncology nursing forum, 2012, Volume: 39, Issue:5

    Topics: Adenocarcinoma; Antiemetics; Antineoplastic Combined Chemotherapy Protocols; Combined Modality Thera

2012
Timely initiation of basal insulin.
    The American journal of medicine, 2004, Feb-02, Volume: 116 Suppl 3A

    Topics: Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Disease Progression; Drug Therapy, Combination

2004

Trials

17 trials available for glimepiride and Hyperglycemia

ArticleYear
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy.
    Diabetes research and clinical practice, 2017, Volume: 131

    Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glucagon-L

2017
Long-term effects on glycaemic control and β-cell preservation of early intensive treatment in patients with newly diagnosed type 2 diabetes: A multicentre randomized trial.
    Diabetes, obesity & metabolism, 2018, Volume: 20, Issue:5

    Topics: Adult; Diabetes Mellitus, Type 2; Drug Resistance, Multiple; Drug Therapy, Combination; Female; Foll

2018
Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin compared with α-glucosidase inhibitor in Japanese patients with type 2 diabetes inadequately controlled on sulfonylurea alone (SUCCESS-2): a multicenter, randomized, open-label, non-i
    Diabetes, obesity & metabolism, 2014, Volume: 16, Issue:8

    Topics: 1-Deoxynojirimycin; Aged; alpha-Glucosidases; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inh

2014
Vildagliptin compared to glimepiride on post-prandial lipemia and on insulin resistance in type 2 diabetic patients.
    Metabolism: clinical and experimental, 2014, Volume: 63, Issue:7

    Topics: Adamantane; Aged; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Double-Blind Method

2014
Different effects of two dipeptidyl peptidase-4 inhibitors and glimepiride on β-cell function in a newly designed two-step hyperglycemic clamp.
    Journal of diabetes, 2015, Volume: 7, Issue:2

    Topics: Adamantane; Adult; Blood Glucose; Cross-Over Studies; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors

2015
HARMONY 3: 104-week randomized, double-blind, placebo- and active-controlled trial assessing the efficacy and safety of albiglutide compared with placebo, sitagliptin, and glimepiride in patients with type 2 diabetes taking metformin.
    Diabetes care, 2014, Volume: 37, Issue:8

    Topics: Aged; Body Weight; Diabetes Mellitus, Type 2; Double-Blind Method; Drug Therapy, Combination; Female

2014
Modulation of insulin dose titration using a hypoglycaemia-sensitive algorithm: insulin glargine versus neutral protamine Hagedorn insulin in insulin-naïve people with type 2 diabetes.
    Diabetes, obesity & metabolism, 2015, Volume: 17, Issue:1

    Topics: Aged; Asia; Blood Glucose Self-Monitoring; Circadian Rhythm; Diabetes Mellitus, Type 2; Drug Dosage

2015
Low-dose glimepiride with sitagliptin improves glycemic control without dose-dependency in patients with type 2 diabetes inadequately controlled on high-dose glimepiride.
    Endocrine journal, 2014, Volume: 61, Issue:12

    Topics: Aged; Cohort Studies; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Dipeptidyl-Peptidase IV Inh

2014
Effects of exenatide and liraglutide on 24-hour glucose fluctuations in type 2 diabetes.
    Endocrine journal, 2016, Volume: 63, Issue:3

    Topics: Aged; Diabetes Mellitus, Type 2; Drug Administration Schedule; Drug Resistance; Drug Therapy, Combin

2016
Effect of ranolazine on glycaemic control in patients with type 2 diabetes treated with either glimepiride or metformin.
    Diabetes, obesity & metabolism, 2016, Volume: 18, Issue:5

    Topics: Aged; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Double-Blind Method; Drug Interactions; Dr

2016
A 24-week study to evaluate the efficacy and safety of once-weekly dulaglutide added on to glimepiride in type 2 diabetes (AWARD-8).
    Diabetes, obesity & metabolism, 2016, Volume: 18, Issue:5

    Topics: Aged; Diabetes Mellitus, Type 2; Double-Blind Method; Drug Administration Schedule; Drug Resistance;

2016
Effects of Glimepiride versus Saxagliptin on β-Cell Function and Hypoglycemia: A Post Hoc Analysis in Older Patients with Type 2 Diabetes Inadequately Controlled with Metformin.
    Clinical therapeutics, 2016, Volume: 38, Issue:12

    Topics: Adamantane; Aged; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Double-

2016
Efficacy and safety of sitagliptin as compared with glimepiride in Japanese patients with type 2 diabetes mellitus aged ≥ 60 years (START-J trial).
    Diabetes, obesity & metabolism, 2017, Volume: 19, Issue:8

    Topics: Activities of Daily Living; Aged; Aged, 80 and over; Aging; Blood Glucose Self-Monitoring; Diabetes

2017
PIOfix-study: effects of pioglitazone/metformin fixed combination in comparison with a combination of metformin with glimepiride on diabetic dyslipidemia.
    Diabetes technology & therapeutics, 2011, Volume: 13, Issue:6

    Topics: Adiponectin; Aged; Anticholesteremic Agents; C-Reactive Protein; Cholesterol, HDL; Cholesterol, LDL;

2011
Glimepiride improves both first and second phases of insulin secretion in type 2 diabetes.
    Diabetes care, 2002, Volume: 25, Issue:9

    Topics: Aged; Blood Glucose; C-Peptide; Diabetes Mellitus, Type 2; Fasting; Female; Glucose Clamp Technique;

2002
The effect of glimepiride on pancreatic beta-cell function under hyperglycaemic clamp and hyperinsulinaemic, euglycaemic clamp conditions in non-insulin-dependent diabetes mellitus.
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 1996, Volume: 28, Issue:9

    Topics: Blood Glucose; C-Peptide; Diabetes Mellitus, Type 2; Double-Blind Method; Glucose Clamp Technique; G

1996
Beta cell response to oral glimepiride administration during and following a hyperglycaemic clamp in NIDDM patients.
    Diabetic medicine : a journal of the British Diabetic Association, 1997, Volume: 14, Issue:7

    Topics: Administration, Oral; Aged; Blood Glucose; C-Peptide; Diabetes Mellitus, Type 2; Female; Glucagon; G

1997

Other Studies

19 other studies available for glimepiride and Hyperglycemia

ArticleYear
Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of novel quinoxaline derivatives as potential PPARγ and SUR agonists.
    Bioorganic & medicinal chemistry, 2017, 02-15, Volume: 25, Issue:4

    Topics: Animals; Antihypertensive Agents; Dose-Response Relationship, Drug; Drug Design; Hyperglycemia; Male

2017
Development of a Novel Zebrafish Model for Type 2 Diabetes Mellitus.
    Scientific reports, 2017, 05-03, Volume: 7, Issue:1

    Topics: Animals; Animals, Genetically Modified; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mel

2017
Specific PERK inhibitors enhanced glucose-stimulated insulin secretion in a mouse model of type 2 diabetes.
    Metabolism: clinical and experimental, 2019, Volume: 97

    Topics: Adenine; Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; eIF-2 Kinase; Glucose; Hypergly

2019
[Effects of glimepiride on proliferation, differentiation and mineralization of rat mandibular osteoblasts in hyperglycemia].
    Shanghai kou qiang yi xue = Shanghai journal of stomatology, 2013, Volume: 22, Issue:2

    Topics: Animals; Cell Differentiation; Cell Proliferation; Hyperglycemia; Mandible; Osteoblasts; Rats; RNA,

2013
Persistent impaired glucose metabolism in a zebrafish hyperglycemia model.
    Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 2014, Volume: 171

    Topics: Animals; Disease Models, Animal; Eye Proteins; Glucose; Glycosylation; Hyperglycemia; Hypoglycemic A

2014
[Effect of glimepiride on the glucose uptake of rat mandibular osteoblasts in hyperglycemia].
    Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology, 2014, Volume: 32, Issue:2

    Topics: Animals; Fluorodeoxyglucose F18; Glucose; Glucose Transporter Type 1; Hyperglycemia; Mandible; Osteo

2014
Synthesis and evaluation of novel pyrroles and pyrrolopyrimidines as anti-hyperglycemic agents.
    BioMed research international, 2014, Volume: 2014

    Topics: Animals; Diabetes Mellitus, Experimental; Drug Design; Hyperglycemia; Hypoglycemic Agents; Magnetic

2014
Treatment satisfaction in type 2 diabetes patients taking empagliflozin compared with patients taking glimepiride.
    Quality of life research : an international journal of quality of life aspects of treatment, care and rehabilitation, 2016, Volume: 25, Issue:5

    Topics: Adult; Benzhydryl Compounds; Clinical Protocols; Diabetes Mellitus, Type 2; Double-Blind Method; Dru

2016
Fasiglifam/TAK-875, a Selective GPR40 Agonist, Improves Hyperglycemia in Rats Unresponsive to Sulfonylureas and Acts Additively with Sulfonylureas.
    The Journal of pharmacology and experimental therapeutics, 2016, Volume: 357, Issue:1

    Topics: Animals; Benzofurans; Blood Glucose; Diabetes Mellitus, Experimental; Drug Synergism; Glucose Tolera

2016
Recurrent hyperglycemia during adalimumab treatment in a patient with psoriasis.
    Archives of dermatology, 2008, Volume: 144, Issue:10

    Topics: Adalimumab; Adult; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Blood Glucose; Diabete

2008
Glimepiride treatment facilitates ischemic preconditioning in the diabetic heart.
    Journal of cardiovascular pharmacology and therapeutics, 2013, Volume: 18, Issue:3

    Topics: Animals; Cardiotonic Agents; Combined Modality Therapy; Diabetes Mellitus, Type 2; Diabetic Cardiomy

2013
The influence of glimepiride on the oxidative state of rats with streptozotocin-induced hyperglycemia.
    Medical science monitor : international medical journal of experimental and clinical research, 2003, Volume: 9, Issue:11

    Topics: Animals; Antioxidants; Body Weight; Glutathione; Hyperglycemia; Hypoglycemic Agents; Male; Malondial

2003
The influence of glimepiride on the binding kinetics of insulin with its skeletal muscle and liver receptors in rats with short term and prolonged hyperglycemia induced by streptozotocin.
    Medical science monitor : international medical journal of experimental and clinical research, 2004, Volume: 10, Issue:1

    Topics: Animals; Hyperglycemia; Hypoglycemic Agents; Insulin; Kinetics; Liver; Male; Muscle, Skeletal; Rats;

2004
Involvement of potassium channels in hypoglycemic effect of sertraline.
    Indian journal of experimental biology, 2006, Volume: 44, Issue:2

    Topics: Animals; Diabetes Mellitus, Experimental; Dose-Response Relationship, Drug; Glucose; Hyperglycemia;

2006
Gatifloxacin induced abnormalities in glucose homeostasis in a patient on glimepiride.
    The Journal of the Association of Physicians of India, 2006, Volume: 54

    Topics: Anti-Infective Agents; Blood Glucose; Diabetes Mellitus; Female; Fluoroquinolones; Gatifloxacin; Hom

2006
Polymorphonuclear leukocyte function in type-2 diabetes mellitus patients and its correlation with glycaemic control.
    Nepal Medical College journal : NMCJ, 2007, Volume: 9, Issue:2

    Topics: Adult; Aged; Blood Glucose; Chronic Disease; Diabetes Complications; Diabetes Mellitus, Type 2; Fema

2007
Postprandial hyperglycemia: are all sulfonylureas created equal?
    The American journal of cardiology, 2008, Feb-15, Volume: 101, Issue:4

    Topics: Carbamates; Cyclohexanes; Glipizide; Humans; Hyperglycemia; Hyperlipidemias; Hypoglycemic Agents; Na

2008
Enhancement by succinic acid dimethyl ester of insulin release evoked by D-glucose and glimepiride in the perfused pancreas of normoglycemic and hyperglycemic rats.
    Biochemical pharmacology, 1994, Apr-29, Volume: 47, Issue:9

    Topics: Animals; Diabetes Mellitus, Type 2; Drug Synergism; Female; Glucagon; Glucose; Hyperglycemia; Hypogl

1994
Modulation of the insulinotropic action of glibenclamide and glimepiride by nutrient secretagogues in pancreatic islets from normoglycemic and hyperglycemic rats.
    Biochemical pharmacology, 1993, May-05, Volume: 45, Issue:9

    Topics: Animals; B-Lymphocytes; Calcium; Carbon Dioxide; Diabetes Mellitus, Type 2; Glucose; Glyburide; Hype

1993