gkt137831 and Fibrosis

gkt137831 has been researched along with Fibrosis* in 3 studies

Reviews

2 review(s) available for gkt137831 and Fibrosis

ArticleYear
Therapeutic potential of NADPH oxidase 1/4 inhibitors.
    British journal of pharmacology, 2017, Volume: 174, Issue:12

    The NADPH oxidase (NOX) family of enzymes produces ROS as their sole function and is becoming recognized as key modulators of signal transduction pathways with a physiological role under acute stress and a pathological role after excessive activation under chronic stress. The seven isoforms differ in their regulation, tissue and subcellular localization and ROS products. The most studied are NOX1, 2 and 4. Genetic deletion of NOX1 and 4, in contrast to NOX2, has revealed no significant spontaneous pathologies and a pathogenic relevance of both NOX1 and 4 across multiple organs in a wide range of diseases and in particular inflammatory and fibrotic diseases. This has stimulated interest in NOX inhibitors for therapeutic application. GKT136901 and GKT137831 are two structurally related compounds demonstrating a preferential inhibition of NOX1 and 4 that have suitable properties for in vivo studies and have consequently been evaluated across a range of disease models and compared with gene deletion. In contrast to gene deletion, these inhibitors do not completely suppress ROS production, maintaining some basal level of ROS. Despite this and consistent with most gene deletion studies, these inhibitors are well tolerated and slow or prevent disease progression in a range of models of chronic inflammatory and fibrotic diseases by modulating common signal transduction pathways. Clinical trials in patients with GKT137831 have demonstrated excellent tolerability and reduction of various markers of chronic inflammation. NOX1/4 inhibition may provide a safe and effective therapeutic strategy for a range of inflammatory and fibrotic diseases.. This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.

    Topics: Animals; Anti-Inflammatory Agents; Enzyme Inhibitors; Fibrosis; Humans; Inflammation; NADPH Oxidase 1; NADPH Oxidase 2; Pyrazoles; Pyrazolones; Pyridines; Pyridones

2017
NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents.
    Archives of dermatological research, 2014, Volume: 306, Issue:4

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists.

    Topics: Antioxidants; Fibrosis; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; NADPH Oxidases; Oxidative Stress; Pyrazoles; Pyrazolones; Pyridines; Pyridones; Reactive Oxygen Species; Skin; Skin Diseases

2014

Other Studies

1 other study(ies) available for gkt137831 and Fibrosis

ArticleYear
Nox1/4 inhibition exacerbates age dependent perivascular inflammation and fibrosis in a model of spontaneous hypertension.
    Pharmacological research, 2020, Volume: 161

    Hypertension is associated with oxidative stress and perivascular inflammation, critical contributors to perivascular fibrosis and accelerated vascular ageing. Oxidative stress can promote vascular inflammation, creating options for potential use of NADPH oxidase inhibitors in pharmacological targeting of perivascular inflammation and its consequences. Accordingly, we characterized age-related changes in oxidative stress and immune cell infiltration in normotensive (WKY) and spontaneously hypertensive rats (SHRs). Subsequently, we used pharmacological inhibitors of Nox1 (ML171) and Nox1/Nox4 (GKT137831; 60 mg/kg), to modulate NADPH oxidase activity at the early stage of spontaneous hypertension and investigated their effects on perivascular inflammation and fibrosis. RESULTS: Ageing was associated with a progressive increase of blood pressure as well as an elevation of the total number of leukocytes, macrophages and NK cells infiltrating perivascular adipose tissue (PVAT) in SHRs but not in WKY. At 1 month of age, when blood pressure was not yet different, only perivascular NK cells were significantly higher in SHR. Spontaneous hypertension was also accompanied by the higher perivascular T cell accumulation, although this increase was age independent. Aortic Nox1 and Nox2 mRNA expression increased with age only in SHR but not in WKY, while age-related increase of Nox4 mRNA in the vessels has been observed in both groups, it was more pronounced in SHRs. At early stage of hypertension (3-months) the most pronounced differences were observed in Nox1 and Nox4. Surprisingly, GKT137831, dual inhibitor of Nox1/4, therapy increased both blood pressure and perivascular macrophage infiltration. Mechanistically, this was linked to increased expression of proinflammatory chemokines expression (CCL2 and CCL5) in PVAT. This inflammatory response translated to increased perivascular fibrosis. This effect was likely Nox4 dependent as the Nox1 inhibitor ML171 did not affect the development of spontaneous hypertension, perivascular macrophage accumulation, chemokine expression nor adventitial collagen deposition. In summary, spontaneous hypertension promotes ageing-associated perivascular inflammation which is exacerbated by Nox4 but not Nox1 pharmacological inhibition.

    Topics: Adipose Tissue; Age Factors; Animals; Aorta; Blood Pressure; Disease Models, Animal; Enzyme Inhibitors; Fibrosis; Hypertension; Inflammation Mediators; Killer Cells, Natural; Macrophages; Male; NADPH Oxidase 1; NADPH Oxidase 4; Pyrazolones; Pyridones; Rats, Inbred SHR; Rats, Inbred WKY; Signal Transduction; T-Lymphocytes; Vasculitis

2020