ginsenoside-ro has been researched along with Diabetes-Mellitus* in 1 studies
1 other study(ies) available for ginsenoside-ro and Diabetes-Mellitus
Article | Year |
---|---|
Development of a method to screen and isolate potential α-glucosidase inhibitors from Panax japonicus C.A. Meyer by ultrafiltration, liquid chromatography, and counter-current chromatography.
A new assay based on ultrafiltration, liquid chromatography and mass spectrometry was developed for the rapid screening and identification of the ligands for α-glucosidase from the extract of Panax japonicus. Six saponins were identified as α-glucosidase inhibitors. Subsequently, the specific binding ligands, namely, notoginsenoside R1 , ginsenoside Rb1 , chikusetsusaponin V, chikusetsusaponin IV, chikusetsusaponin IVa, and ginsenoside Rd (the purities were 94.18, 95.43, 96.09, 93.26, 94.50, 93.86%, respectively) were separated by counter-current chromatography using two-phase solvent systems composed of tert-butyl methyl ether, acetonitrile, 0.1% aqueous formic acid (3.8:1.0:4.4, v/v/v) and the solvent system composed of methylene chloride, isopropanol, methanol, 0.1% aqueous formic acid (5.8:1.0:6.0:2.2, v/v/v). The results demonstrate that ultrafiltration, liquid chromatography and mass spectrometry combined with high-speed counter-current chromatography might provide not only a powerful tool for screening and isolating α-glucosidase inhibitors in complex samples but also a useful platform for discovering bioactive compounds for the prevention and treatment of diabetes mellitus. Topics: Acetonitriles; alpha-Glucosidases; Chromatography, Liquid; Diabetes Mellitus; Enzyme Inhibitors; Formates; Ginsenosides; Glycoside Hydrolase Inhibitors; Humans; Ligands; Mass Spectrometry; Methyl Ethers; Models, Theoretical; Multivariate Analysis; Oleanolic Acid; Panax; Plant Extracts; Saponins; Solvents; Spectrometry, Mass, Electrospray Ionization; Ultrafiltration | 2015 |