ginsenoside-rg3 and Precancerous-Conditions

ginsenoside-rg3 has been researched along with Precancerous-Conditions* in 2 studies

Other Studies

2 other study(ies) available for ginsenoside-rg3 and Precancerous-Conditions

ArticleYear
Ginsenoside Rg3 inhibits angiogenesis in gastric precancerous lesions through downregulation of Glut1 and Glut4.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, Volume: 145

    Ginsenoside Rg3 (GRg3) is a ginsenoside extracted from Panax ginseng. GRg3 displays multiple pharmacological properties, such as antitumor, anti-inflammatory, antioxidative and antifibrotic properties. However, whether GRg3 inhibits angiogenesis in gastric precancerous lesions (GPLs) and the possible mechanisms remain unknown. GRg3 attenuated gastric intestinal metaplasia and gastric dysplasia, the hallmark of GPL pathology, in rats with MNNG-ammonia compound induced GPLs. Increased CD34+ microvessel density and VEGF expression, which indicate the presence of angiogenesis, were evident in the rats with GPLs. GRg3 administration reduced VEGF protein expression and CD34+ microvessel density. In addition, GRg3 was capable of attenuating microvascular abnormalities. Data analysis revealed that enhanced protein expression of GLUT1, GLUT3 and GLUT4 were present in both human and animal GPL specimens. The administration of GRg3 caused significant decreases in the mRNA and protein expression levels of GLUT1 and GLUT4 in the rats with GPLs. However, the GRg3-treated rats with GPLs did not demonstrate regulatory effects on GLUT3, GLUT6, GLUT10, and GLUT12. Consistent with in vitro results, GRg3 administration significantly reduced the protein expression levels of GLUT1 and GLUT4 in both AGS and HGC-27 human gastric cancer cells in vitro. In conclusion, GRg3 can attenuate angiogenesis and temper microvascular abnormalities in rats with GPLs, which may be associated with its inhibition on the aberrant activation of GLUT1 and GLUT4.

    Topics: Animals; Cell Line, Tumor; Down-Regulation; Ginsenosides; Glucose Transporter Type 1; Glucose Transporter Type 4; Humans; Male; Neovascularization, Pathologic; Precancerous Conditions; Rats; Rats, Sprague-Dawley; Retrospective Studies; Stomach Neoplasms

2022
Ginsenoside Rg3 induces apoptosis and inhibits proliferation by down-regulating TIGAR in rats with gastric precancerous lesions.
    BMC complementary medicine and therapies, 2022, Jul-15, Volume: 22, Issue:1

    Ginsenoside Rg3 (GRg3) is one of the main active ingredients in Chinese ginseng extract and has various biological effects, such as immune-enhancing, antitumour, antiangiogenic, immunomodulatory and anti-inflammatory effects. This study aimed to investigate the therapeutic effect of GRg3 on gastric precancerous lesion (GPL) induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and the potential mechanism of action.. The MNNG-ammonia composite modelling method was used to establish a rat model of GPL. Histopathological changes in the rat gastric mucosa were observed by pathological analysis using haematoxylin-eosin staining to assess the success rate of the composite modelling method. Alcian blue-periodic acid Schiff staining was used to observe intestinal metaplasia in the rat gastric mucosa. Apoptosis was detected in rat gastric mucosal cells by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling staining. The production level of reactive oxygen species (ROS) was determined by the dihydroethidium fluorescent probe method, and that of TP53-induced glycolysis and apoptosis regulator (TIGAR) protein was determined by immunohistochemical staining and western blotting. The production levels of nicotinamide adenine dinucleotide phosphate (NADP) and glucose-6-phosphate dehydrogenase (G6PDH) were determined by an enzyme-linked immunosorbent assay, and that of glutathione (GSH) was determined by microanalysis.. GRg3 significantly alleviated the structural disorganization and cellular heteromorphism in the form of epithelial glands in the gastric mucosa of rats with GPL and retarded the progression of the disease. Overexpression of TIGAR and overproduction of NADP, GSH and G6PDH occurred in the gastric mucosal epithelium of rats with GPL, which in turn led to an increase in the ROS concentration. After treatment with GRg3, the expression of TIGAR and production of NADP, GSH G6PDH decreased, causing a further increase in the concentration of ROS in the gastric mucosal epithelium, which in turn induced apoptosis and played a role in inhibiting the abnormal proliferation and differentiation of gastric mucosal epithelial cells.. Grg3 can induce apoptosis and inhibit cell proliferation in MNNG-induced GPL rats. The mechanism may be related to down-regulating the expression levels of TIGAR and production levels of GSH, NADP and G6PD, and up-regulating the concentration of ROS.

    Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Cell Proliferation; Ginsenosides; Glycolysis; Methylnitronitrosoguanidine; NADP; Precancerous Conditions; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species

2022