ginsenoside-rg3 has been researched along with Fatigue* in 4 studies
4 other study(ies) available for ginsenoside-rg3 and Fatigue
Article | Year |
---|---|
Effects of Ginsenoside Rg3 on fatigue resistance and SIRT1 in aged rats.
Ginsenoside Rg3 (Rg3) is one of the key components of a frequently used herbal tonic panax ginseng for fatigue treatment. However, the molecular mechanisms of Rg3 on anti-fatigue effects have not been completely understood yet.. We built a postoperative fatigue syndrome (POFS) model and tried to elucidate the molecular mechanisms responsible for anti-fatigue effects of Rg3. 160 aged male rats were randomly divided into four groups (n = 40/group): normal group, Rg3-treated normal group (Rg3 group), postoperative fatigue syndrome model group (POFS group) and Rg3-treated postoperative fatigue syndrome model group (POFS + Rg3 group). The open field test (OFT) was used to assess general activity and exploratory behavior of rats in different groups. We then analyzed total cholesterol (TC), serum triglyceride (TG) and lactate dehydrogenase (LDH) in the blood, as well as superoxide dismutase (SOD), malondialdehyde (MDA), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression in skeletal muscles of rats. We also detected the influence of Rg3 on silent information regulator of transcription 1 (sirtuin1, SIRT1) activity and protein 53 (p53) transcriptional activity in vitro.. Rg3 significantly increased the journey distance and rearing frequency, while slowed down the rest time. The serum concentrations of TC, TG and LDH were all up-regulated by Rg3. Meanwhile, Rg3 increased concentrations of SOD, but also decreased MDA release out of skeletal muscles. The mRNA expressions of PGC-1α and PEPCK were also enhanced by Rg3. Besides, Rg3 could activate SIRT1 and suppress p53 transcriptional activity in the biological process.. Rg3 could improve exercise performance and resist fatigue possibly through elevating SIRT1 deacetylase activity. Topics: Aging; Animals; Behavior, Animal; Fatigue; Ginsenosides; HEK293 Cells; Humans; Intracellular Signaling Peptides and Proteins; Male; Malondialdehyde; Muscle, Skeletal; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Phosphoenolpyruvate Carboxykinase (GTP); Rats, Sprague-Dawley; Sirtuin 1; Superoxide Dismutase; Tumor Suppressor Protein p53 | 2018 |
Intranasal Delivery of Microspheres Loaded with 20 (R)-ginsenoside Rg3 Enhances Anti-Fatigue Effect in Mice.
Nasal delivery of 20 (R) -ginsenoside Rg3 (Rg3) has a short-lived anti-fatigue effect owing to rapid clearance by nasal cilia. Thus, in order to extend the residence time of Rg3 in the nasal cavity, a new drug delivery system is needed.. Chitosan microspheres loaded with Rg3 were prepared using a multi-step emulsification method and were characterized in vitro and in vivo.. The microspheres had a spherical shape with a mean diameter of 44.9±12.6 08m. The drugloading ratio was 10.25±0.08%, and the encapsulation ratio was 30.61±1.46%. Our in vitro mucoadhesion experiment demonstrated that 70.35±1.79% of the microspheres adhered to the nasal mucosa. The in vitro release study revealed that 31.1% of the Rg3 was released from the microspheres in the first 10 min. Release slowed, with 88.64% of the Rg3 released within 6 h. The pharmacodynamics study demonstrated that the weight-bearing swimming time of mice increased significantly from 432±89 s to 486±96 s after administration of Rg3 microspheres compared with the Rg3 water solution. Blood lactic acid and serum urea nitrogen significantly decreased in the group administered microspheres compared to the water solution group (p<0.05). Hepatic glycogen and lactate dehydrogenase increased significantly in the group administered microspheres compared to the water solution group (p<0.01).. 20 (R) -ginsenoside Rg3 entrapped in chitosan microspheres may have a beneficial effect against fatigue by increasing the residence time of Rg3 in the nasal cavity and enhancing absorption by the nasal mucosa. Topics: Administration, Intranasal; Animals; Chitosan; Drug Delivery Systems; Fatigue; Female; Ginsenosides; Male; Mice; Microspheres; Nasal Mucosa; Particle Size; Rats, Sprague-Dawley | 2017 |
Effect of ginsenoside Rg3 on tyrosine hydroxylase and related mechanisms in the forced swimming-induced fatigue rats.
Ginsenoside Rg3 has shown multiple pharmacological activities and been considered as one of the most promising approaches for fatigue treatment. However, little is known about the cellular and molecular mechanisms of Rg3 on anti-fatigue and the effect of Rg3 on dopaminergic system has not been reported yet. The major aim of this study is to investigate the effect of Rg3 on TH expression and the related biochemical parameters, such as PKAα, ERK1/2, Akt and α-synuclein in brain of fatigue rats.. Weight-loaded forced swimming was performed to establish an animal model of fatigue. Rg3 (10mg/kg, 50mg/kg and 100mg/kg) was intragastrically administrated before swimming. The effect of Rg3 on the expression and phosphorylation of TH and TH-related proteins in fatigue rats or in SH-SY5Y cells was assessed with western blotting. HPLC was used to examine the level of DA and DOPAC in the fatigue rats tissues.. TH and phosphorylated TH were decreased in different brain regions of which ventral midbrain were less affected in weight-loaded forced swimming rats. Pretreatment with Rg3 significantly suppressed fatigue-induced decrease expression of TH and TH phosphorylation. Also treatment with Rg3 reversed the decrease expression of PKAα as well as the phosphorylation of ERK1/2 and Akt which were induced by weight-loaded forced swimming. Moreover, weight-loaded swimming could induce the increase expression of α-synuclein in hippocampus and midbrain, while suppressed α-synuclein expression in striatum and prefrontal cortex. Furthermore, Rg3 could induce the increase of TH expression and phosphorylation which was accompanied with elevated expression and phosphorylation of related kinase proteins in vitro, while the inhibitors of kinase proteins could suppress these effects of Rg3. In addition, HPLC results showed that Rg3 could reverse the weight-loaded swimming-induced increase of DOPAC/DA ratio.. Our data suggest that fatigue can induce the decrease of DA which might partially result from the change of TH expression and phosphorylation, and Rg3 can reverse these fatigue-induced changes. The underling mechanisms may include the activity changes of PKAα, ERK1/2, Akt and α-synuclein. Topics: alpha-Synuclein; Animals; Brain; Cell Line, Tumor; Cyclic AMP-Dependent Protein Kinases; Dopamine; Fatigue; Ginsenosides; Humans; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Swimming; Tyrosine 3-Monooxygenase | 2013 |
The anti-fatigue effect of 20(R)-ginsenoside Rg3 in mice by intranasally administration.
20(R)-ginsenoside Rg3 (20(R)-Rg3) has shown multiple pharmacological activities and been considered as one of the most promising approaches for fatigue treatment. However, 20(R)-Rg3 has a low bioavailability after oral administration in human due to the first-pass effect. Recently, nasal route has gained increasing interest as it can avoid first-pass effect for its lower enzymatic activity compared with the gastrointestinal tract and liver. In order to provide an animal experimental evidence of 20(R)-Rg3 intranasal administrated preparation, the anti-fatigue effect of 20(R)-Rg3 after intranasal administration was investigated. Two weeks after 20(R)-ginsenoside Rg3 was administrated intranasally to mice at three different doses, the anti-fatigue effect of 20(R)-Rg3 was evaluated by the weight-loaded swimming test and biochemical parameters related to fatigue, such as serum urea nitrogen (SUN), lactic dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA), blood lactic acid (LA) and hepatic glycogen. The results showed that compared with the negative control group, the intermediate-dose and the high-dose groups significantly prolonged the weight-loaded swimming time (p<0.05; p<0.01), and also increased the hepatic glycogen levels (p<0.05); SUN levels were decreased considerably in three 20(R)-Rg3-treated groups (p<0.01). In addition, the low-dose group obviously decreased the content of blood LA (p<0.05). However, the levels of LDH, SOD and MDA did not show a significant change. Our results predicted a benefit of 20(R)-Rg3 as an anti-fatigue treatment by intranasal administration. The mechanism was related to the increase of the storage of hepatic glycogen, and the decrease of the accumulation of metabolite such as lactic acid and serum urea nitrogen. Topics: Administration, Intranasal; Animals; Body Weight; Dose-Response Relationship, Drug; Fatigue; Ginsenosides; Male; Mice; Mice, Inbred Strains; Physical Endurance; Swimming | 2008 |