ginsenoside-rg3 has been researched along with Diabetic-Nephropathies* in 5 studies
5 other study(ies) available for ginsenoside-rg3 and Diabetic-Nephropathies
Article | Year |
---|---|
Ginsenoside Rg3 has effects comparable to those of ginsenoside re on diabetic kidney disease prevention in db/db mice by regulating inflammation, fibrosis and PPARγ.
Ginsenoside Rg3 (Rg3) is an adjuvant antitumor drug, while ginsenoside Re (Re) is an adjuvant antidiabetic drug. Our previous studies demonstrated that Rg3 and Re both have hepatoprotective effects in db/db mice. The present study aimed to observe the renoprotective effects of Rg3 on db/db mice, with Re as the control. The db/db mice were randomly assigned to receive daily oral treatment with Rg3, Re or vehicle for 8 weeks. Body weight and blood glucose were examined weekly. Blood lipids, creatinine, and BUN were examined by biochemical assay. Hematoxylin and eosin and Masson staining were used for pathological examination. The expression of peroxisome proliferator‑activated receptor gamma (PPARγ) and inflammation and fibrosis biomarkers was examined by immunohistochemical and reverse transcription‑quantitative PCR. Although neither had a significant effect on body weight, blood glucose or lipids, Rg3 and Re were both able to decrease the creatinine and blood urea nitrogen levels of db/db mice to levels similar to those of wild type mice and inhibit pathological changes. The expression of PPARγ was upregulated and biomarkers of inflammation and fibrosis were downregulated by Rg3 and Re. The results showed that the potential of Rg3 as a preventive treatment of diabetic kidney disease was similar to that of Re. Topics: Animals; Blood Glucose; Body Weight; Creatinine; Diabetes Mellitus; Diabetic Nephropathies; Inflammation; Mice; Mice, Inbred Strains; PPAR gamma | 2023 |
Alleviative effects of 20(R)-Rg3 on HFD/STZ-induced diabetic nephropathy via MAPK/NF-κB signaling pathways in C57BL/6 mice.
Diabetic nephropathy (DN) is a major complication of diabetes. The kidney disease develops in nearly 20%-40% of type 2 diabetes (T2D) patients. Ginseng is the root of Panax ginseng C. A. Meyer and has been used in prevention and treatment of diseases for more than 2000 years as a traditional oriental medicine. The 20(R)-ginsenoside Rg3, an active saponin isolated from ginseng, can prevent and treat many diseases. The object of this research was to explore the alleviative effects of 20(R)-Rg3 on DN in mice.. The T2D animal model was induced by continuous access to a high fat diet (HFD) combined with a single injection of 100 mg/kg streptozotocin (STZ) in C57BL/6 mice. The mice were treated by oral gavage of the 20(R)-Rg3 (10, 20 mg/kg) for 8 weeks. Functional and histopathological analyses of the kidneys were then performed. Protein expression levels of MAPKs and NF-κB signal pathways in the kidney were evaluated by western blotting. The expressions of HO-1 and NF-κB in the kidney were measured by fluorescent labeling staining. Other assessments including fasting blood glucose (FBG) levels, blood lipids, oxidative indicators, and inflammatory factors were all performed.. Abnormally elevated FBG levels were observed in HFD/STZ mice, contributing significantly to the occurrence of DN. Simultaneously, HFD/STZ mice showed the rise of serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels, and the decrease in high density lipoprotein cholesterol (HDL-C). DN was evidenced by the overproduction of malondialdehyde (MDA), decreased levels of superoxide dismutase (SOD) and catalase (CAT) enzymatic activities, high levels of serum blood urea nitrogen (BUN) and creatinine (Cr). Simultaneously, the results of the immunofluorescence assay showed an increased expression level in NF-κB p65 while a decrease in antioxidant enzyme HO-1 was observed. Herein, 20(R)-Rg3 treatment for 8 weeks not only attenuated FBG levels and advanced glycation end products (AGEs) levels but also improved insulin (INS) level, blood lipids, oxidative stress, and renal function by regulating MAPKs and NF-κB signal pathways in DN mice.. Taken together, the findings from the present study explicitly confirmed that 20(R)-Rg3 exerted ameliorative effects on DN mice via improving anti-oxidative activity and reducing renal inflammation. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Biomarkers; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Diet, High-Fat; Ginsenosides; Heme Oxygenase-1; Hypoglycemic Agents; Kidney; Male; Mice, Inbred C57BL; Mitogen-Activated Protein Kinases; NF-kappa B; Oxidative Stress; Signal Transduction; Streptozocin; Transcription Factor RelA | 2021 |
20(S)-Ginsenoside Rg3 Protects Kidney from Diabetic Kidney Disease via Renal Inflammation Depression in Diabetic Rats.
20(S)-Ginsenoside Rg3 (20(S)-Rg3) has been shown to induce apoptosis by interfering with several signaling pathways. Furthermore, it has been reported to have anticancer and antidiabetic effects. In order to detect the protective effect of 20(S)-Rg3 on diabetic kidney disease (DKD), diabetic rat models which were established by administering high-sugar, high-fat diet combined with intraperitoneal injection of streptozotocin (STZ), and age-matched wild-type (WT) rat were given 20(S)-Rg3 for 12 weeks, with three groups: control group (normal adult rats with saline), diabetic group (diabetic rats with saline), and 20(S)-Rg3 treatment group (diabetic rats with 20(S)-Rg3 (10 mg/kg body weight/day)). The biochemical indicators and the changes in glomerular basement membrane and mesangial matrix were detected. TUNEL staining was used to detect glomerular and renal tubular cell apoptosis. Immunohistochemical staining was used to detect the expression of fibrosis factors and inflammation factors in rat kidney tissues. Through periodic acid-Schiff staining, we observed that the change in renal histology was improved and renal tubular epithelial cell apoptosis decreased significantly by treatment with 20(S)-Rg3. Plus, the urine protein decreased in the rats with the 20(S)-Rg3 treatment. Fasting blood glucose, creatinine, total cholesterol, and triglyceride levels in the 20(S)-Rg3 treatment group were all lower than those in the diabetic group. Mechanistically, 20(S)-Rg3 dramatically downregulated the expression of TGF- Topics: Animals; Apoptosis; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Ginsenosides; Inflammation; Kidney; Male; Protective Agents; Rats; Rats, Wistar | 2020 |
Genomic expression profiling and bioinformatics analysis on diabetic nephrology with ginsenoside Rg3.
Diabetic nephropathy (DN), a common diabetes-related complication, is the leading cause of progressive chronic kidney disease (CKD) and end‑stage renal disease. Despite the rapid development in the treatment of DN, currently available therapies used in early DN cannot prevent progressive CKD. The exact pathogenic mechanisms and the molecular events underlying DN development remain unclear. Ginsenoside Rg3 is a herbal medicine with numerous pharmacological effects. To gain a greater understanding of the molecular mechanism and signaling pathway underlying the effect of ginsenoside Rg3 in DN therapy, an RNA sequencing approach was performed to screen differential gene expression in a rat model of DN treated with ginsenoside Rg3. A combined bioinformatics analysis was then conducted to obtain insights into the underlying molecular mechanisms of the disease development, in order to identify potential novel targets for the treatment of DN. Six Sprague‑Dawley male rats were randomly divided into 3 groups: Normal control group, DN group and ginsenoside‑Rg3 treatment group, with two rats in each group. RNA sequencing was adopted for transcriptome profiling of cells from the renal cortex of DN rat model. Differentially expressed genes were screened out. Cluster analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to analyze the differentially expressed genes. In total, 78 differentially expressed genes in the DN control group were identified when compared with the normal control group, of which 52 genes were upregulated and 26 genes were downregulated. Differential expression of 43 genes was observed in the ginsenoside‑Rg3 treatment group when compared with the DN control group, consisting of 10 upregulated genes and 33 downregulated genes. Notably, 21 that were downregulated in the DN control group compared with the control were then shown to be upregulated in the ginsenoside‑Rg3 treatment group compared with the DN control group. In addition, 7 upregulated genes in the DN control group compared with the control were then shown to be downregulated in the ginsenoside‑Rg3 treatment group compared with the DN control group. Cluster analysis based on differentially expressed genes indicated that the transcriptomes are quite different among the samples. Distinct GO terms associated with these groups of genes were shown to be enriched. KEGG pathway analysis demonstrated that differentially expressed genes were pr Topics: Animals; Case-Control Studies; Cluster Analysis; Computational Biology; Diabetic Nephropathies; Disease Models, Animal; Gene Expression Profiling; Gene Expression Regulation; Gene Ontology; Gene Regulatory Networks; Genomics; Ginsenosides; Male; Molecular Sequence Annotation; Rats; Signal Transduction; Transcriptome | 2016 |
Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats.
The inhibitors of advanced glycation endproduct and oxidative stress, as well as N-methyl-d-aspartate (NMDA) receptor antagonists have received considerable interest because of their close association with renoprotective effects. The therapeutic potential of 20(S)-ginsenoside Rg(3) (20(S)-Rg(3)), isolated from Panax ginseng, against streptozotocin-induced diabetic renal damage, was investigated in this study. The diabetic rats received 5, 10, and 20 mg/kg body weight/day of 20(S)-Rg(3) orally via gavage for fifteen consecutive days. The physiological abnormalities such as increases in water intake and urine volume of diabetic rats were significantly decreased by the 20 mg/kg body weight of 20(S)-Rg(3) administration. The elevated serum glucose, glycosylated protein, and thiobarbituric acid-reactive substance levels in diabetic rats were also significantly reduced by the 20(S)-Rg(3) administrations. Moreover, the renal dysfunction of diabetic rats was significantly ameliorated by the 20(S)-Rg(3) administrations in a dose-dependent manner. These beneficial effects on diabetic renal damage were related to the inhibitory effect of 20(S)-Rg(3) against NMDA receptor-mediated nitrosative stress. Topics: Administration, Oral; Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Dose-Response Relationship, Drug; Drinking; Ginsenosides; Glycosylation; Male; Oxidative Stress; Panax; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Streptozocin; Thiobarbituric Acid Reactive Substances | 2008 |