ginsenoside-rg3 and Chemical-and-Drug-Induced-Liver-Injury

ginsenoside-rg3 has been researched along with Chemical-and-Drug-Induced-Liver-Injury* in 3 studies

Other Studies

3 other study(ies) available for ginsenoside-rg3 and Chemical-and-Drug-Induced-Liver-Injury

ArticleYear
Ginsenoside Rg3 ameliorates acetaminophen-induced hepatotoxicity by suppressing inflammation and oxidative stress.
    The Journal of pharmacy and pharmacology, 2021, Mar-06, Volume: 73, Issue:3

    Improper usage of acetaminophen (APAP) leads to morbidity and also mortality secondary to liver damage. Ginseng could suppress APAP-induced hepatotoxicity and ginsenoside Rg3 is a kind of major component in ginseng against liver damage. Herein, we intended to estimate the beneficial function and molecular mechanism of Rg3 on APAP-caused hepatotoxicity and identified hepatoprotection.. A total of 50 C57BL/6J mice were divided into five random groups, and each contains 10 mice as the control, acetaminophen (350 mg/kg) and Rg3 (5, 10 and 20 mg/kg) + acetaminophen (350 mg/kg) groups. These mice were intragastric administration a single dose of acetaminophen by oral treatment behind pre-administered with several doses of ginsenoside Rg3 for six hours.. According to our data, the injection of APAP (350 mg/kg) enhanced the basal levels of alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase and lactic dehydrogenase. However, these abnormal added were alleviated by Rg3. Moreover, Rg3 treatment obviously relieved APAP-caused inflammation and oxidant in liver tissues. The depletion of glutathione, glutathione peroxidase, total antioxidant capacity and generation of malondialdehyde induced by APAP treatment were reduced by Rg3. By H&E staining, Rg3 effectively reduced APAP-caused apoptosis and inflammatory infiltration. Moreover, Rg3 attenuated APAP-caused hepatic damage in part by regulating the pro-inflammatory and anti-inflammatory cytokines. Moreover, we found that Rg3 could bind to NLRP3 suggesting the anti-inflammatory effects of Rg3 by molecular docking study.. In summary, Rg3 showed hepatic protective function in APAP-induced hepatotoxicity as evidenced by a reduction of the oxidant and the inflammatory reply, relieve of hepatocellular damage, showing potential in Rg3 as a potential therapeutic medicine to prevent hepatic injury.

    Topics: Acetaminophen; Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Chemical and Drug Induced Liver Injury; Cytokines; Dose-Response Relationship, Drug; Ginsenosides; Inflammation; Male; Mice; Mice, Inbred C57BL; Molecular Docking Simulation; Oxidative Stress

2021
20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis.
    International immunopharmacology, 2018, Volume: 59

    Although ginsenoside Rg3 was isolated as a major component of Korea red ginseng and confirmed to exert potential hepatoprotective effect on acetaminophen (APAP)-induced liver injury via induction of glutathione S-transferase (GST) in vitro, thein vivo hepatoprotective effect of Rg3 and the underlying molecular mechanism of action remain unclear. The current study was aimed to explore whether 20(R)-Ginsenoside Rg3 (20(R)-Rg3) could alleviate acetaminophen-induced liver injury in mice and to determine the involvement of PI3K/AKT signaling pathway. Our findings demonstrated that a single injection of APAP (250 mg/kg) increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β); such increases were attenuated by pretreatment of mice with 20(R)-Rg3 for seven days. The depletion of glutathione (GSH), generation of malondialdehyde (MDA) and the over expression of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP exposure were also inhibited by 20(R)-Rg3 pretreatment. Moreover, 20(R)-Rg3 pretreatment significantly alleviated APAP-induced apoptosis, necrosis, and inflammatory infiltration in liver tissues. Importantly, 20(R)-Rg3 effectively attenuated APAP-induced liver injury in part via activating PI3K/AKT signaling pathway. In summary, 20(R)-Rg3 exerted liver protection against APAP-caused hepatotoxicity evidenced by inhibition of oxidative stress and inflammatory response, alleviation of hepatocellular necrosis and apoptosis via activation of PI3K/AKT signaling pathway, showing potential as a novel therapeutic agent to prevent liver damage.

    Topics: Acetaminophen; Alanine Transaminase; Animals; Anti-Inflammatory Agents; Apoptosis; Aspartate Aminotransferases; Chemical and Drug Induced Liver Injury; Ginsenosides; Liver; Male; Mice, Inbred ICR; Oxidative Stress; Panax; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction

2018
Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux.
    Bioscience reports, 2017, Aug-31, Volume: 37, Issue:4

    Sepsis-led mitochondrial dysfunction has become a critical pathophysiological procedure in sepsis. Since ginsenosides have been applied in the treatment of mitochondrial dysfunction, ginsenoside Rg3 was employed to study its effects on the mitochondrial dysfunction induced by sepsis. The apoptosis rate, oxygen consumption rate (OCR), reactive oxygen species (ROS), antioxidant glutathione (GSH) pools, and mitochondrial transmembrane potential (MTP) were determined in LPS-induced sepsis hepatocytes treated with different concentrations of Rg3. Then, the protein expression levels of mitochondrial biogenesis related transcription factors, autophagy-related proteins, and AMP-activated protein kinase (AMPK) signal pathway related proteins were determined by Western blotting in both

    Topics: AMP-Activated Protein Kinases; Animals; Autophagy; Chemical and Drug Induced Liver Injury; Ginsenosides; Humans; Lipopolysaccharides; Male; Mice; Mitochondria, Liver; Mitochondrial Diseases; Reactive Oxygen Species; Sepsis

2017