ginsenoside-rd has been researched along with Brain-Infarction* in 2 studies
2 other study(ies) available for ginsenoside-rd and Brain-Infarction
Article | Year |
---|---|
Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats.
We previously found that ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, attenuates neuronal oxidative damage in vitro induced by hydrogen peroxide and oxygen-glucose deprivation. In this study, we sought to investigate the potential protective effects and associated mechanisms of Rd in a rat model of focal cerebral ischemia. Rats administered with Rd (0.1-200mg/kg) or vehicle was subjected to transient middle cerebral artery occlusion. Rd at the dose of 10-50mg/kg significantly reduced the infarct volume and improved the long-term neurological outcome up to 6 weeks after ischemia. To evaluate the underlying mechanisms, in vivo free radical generation was monitored using microdialysis, oxidative DNA damage was identified by 8-hydroxy-deoxyguanosine immunostaining, oxidative protein damage was identified by the assessment of protein carbonyl and advanced glycosylation end products, and lipid peroxidation was estimated by determining the malondialdehyde and 4-hydroxynonenal formations. Microdialysis results displayed a prominent inhibitory effect of Rd on the hydroxy radical formation trapped as 2,3- and 2,5-DHBA. Early accumulations of DNA, protein and lipid peroxidation products were also suppressed by Rd treatment. Although Rd partly preserved endogenous antioxidant activities in the ischemic penumbra, in sham rats without stroke, endogenous antioxidant activities were not affected by Rd. Furthermore, we assayed sequential inflammatory response in a later phase after ischemia. Rd significantly eliminated inflammatory injury as indicated by the suppression of microglial activation, inducible nitric oxide synthase and cyclooxygenase-2 expression. Collectively, these findings demonstrated that Rd exerts neuroprotection in transient focal ischemia, which may involve early free radicals scavenging pathway and a late anti-inflammatory effect. Topics: Animals; Antioxidants; Brain Infarction; Brain Ischemia; Disease Models, Animal; Ginsenosides; Male; Neuroprotective Agents; Oxidative Stress; Panax; Rats; Rats, Sprague-Dawley | 2011 |
Ginsenoside rd in experimental stroke: superior neuroprotective efficacy with a wide therapeutic window.
Ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, has been demonstrated to protect against ischemic cerebral damage in vitro and in vivo. In this study, we aimed to further define the preclinical characteristics of Rd. We show that Rd passes the intact blood-brain barrier and exerts protection in both transient and permanent middle cerebral artery occlusion (MCAO) in rats. In the dose-response study, Rd (10-50 mg/Kg) significantly reduced the infarct volume on postoperative days (PODs) 1, 3, and 7. This protection was associated with an improved neurological outcome for as many as 6 weeks after transient MCAO, as assessed by modified neurological severity score, modified sticky-tape test, and corner test. For comparison, Rd was significantly more effective than edaravone and slightly more effective than N-tert-butyl-alpha-phenylnitrone (PBN). In the therapeutic window study, Rd exhibited remarkable neuroprotection, even when administered for as many as 4 h after the recirculation of transient MCAO or after the onset of permanent MCAO. Furthermore, in female rats or 16-month-old male rats, the salutary effects of Rd were also observed. These findings suggest Rd is a promising neuroprotectant and provide support for future clinical studies to confirm whether Rd is beneficial in ischemic stroke. Topics: Animals; Behavior, Animal; Blood-Brain Barrier; Brain Edema; Brain Infarction; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Ginsenosides; Infarction, Middle Cerebral Artery; Male; Motor Activity; Neurologic Examination; Neuroprotective Agents; Postural Balance; Rats; Rats, Sprague-Dawley; Time Factors | 2011 |