gingerol has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 5 studies
5 other study(ies) available for gingerol and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
6-Gingerol Ameliorates Hepatic Steatosis, Inflammation and Oxidative Stress in High-Fat Diet-Fed Mice through Activating LKB1/AMPK Signaling.
6-Gingerol, one of the major pharmacologically active ingredients extracted from ginger, has been reported experimentally to exert hepatic protection in non-alcoholic fatty liver disease (NAFLD). However, the molecular mechanism remains largely elusive. RNA sequencing indicated the significant involvement of the AMPK signaling pathway in 6-gingerol-induced alleviation of NAFLD in vivo. Given the significance of the LKB1/AMPK pathway in metabolic homeostasis, this study aims to investigate its role in 6-gingerol-induced mitigation on NAFLD. Our study showed that 6-gingerol ameliorated hepatic steatosis, inflammation and oxidative stress in vivo and in vitro. Further experiment validation suggested that 6-gingerol activated an LKB1/AMPK pathway cascade in vivo and in vitro. Co-immunoprecipitation analysis demonstrated that the 6-gingerol-elicited activation of an LKB1/AMPK pathway cascade was related to the enhanced stability of the LKB1/STRAD/MO25 complex. Furthermore, radicicol, an LKB1 destabilizer, inhibited the activating effect of 6-gingerol on an LKB1/AMPK pathway cascade via destabilizing LKB1/STRAD/MO25 complex stability in vitro, thus reversing the 6-gingerol-elicited ameliorative effect. In addition, molecular docking analysis further predicated the binding pockets of LKB1 necessary for binding with 6-gingerol. In conclusion, our results indicate that 6-gingerol plays an important role in regulating the stability of the LKB1/STRAD/MO25 complex and the activation of LKB1, which might weigh heavily in the 6-gingerol alleviation of NAFLD. Topics: AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Animals; Diet, High-Fat; Inflammation; Liver; Mice; Mice, Inbred C57BL; Molecular Docking Simulation; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Protein Serine-Threonine Kinases | 2023 |
6-Gingerol Ameliorates Hepatic Steatosis via HNF4α/miR-467b-3p/GPAT1 Cascade.
The development of nonalcoholic fatty liver disease (NAFLD) can be modulated by microRNAs (miRNA). Dietary polyphenols modulate the expression of miRNA such as miR-467b-3p in the liver. In addition, 6-gingerol (6-G), the functional polyphenol of ginger, has been reported to ameliorate hepatic steatosis; however, the exact mechanism involved and the role of miRNA remain elusive. In this study, we assessed the role of miR-467b-3p in the pathogenesis of hepatic steatosis and the regulation of miR-467b-3p by 6-G through the hepatocyte nuclear factor 4α (HNF4α).. miR-467b-3p expression was measured in free fatty acid (FFA)-treated hepatocytes or liver from high-fat diet (HFD)-fed mice. Gain- or loss-of-function of miR-467b-3p was induced using miR-467b-3p-specific miRNA mimic or miRNA inhibitor, respectively. 6-G was exposed to FFA-treated cells and HFD-fed mice. The HNF4α/miR-467b-3p/GPAT1 axis was measured in mouse and human fatty liver tissues.. We found that miR-467b-3p was down-regulated in liver tissues from HFD-fed mice and in FFA-treated Hepa1-6 cells. Overexpression of miR-467b-3p decreased intracellular lipid accumulation in FFA-treated hepatocytes and mitigated hepatic steatosis in HFD-fed mice via negative regulation of glycerol-3-phosphate acyltransferase-1 (GPAT1). In addition, miR-467b-3p up-regulation by 6-G was observed. 6-G inhibited FFA-induced lipid accumulation and mitigated hepatic steatosis. Moreover, it increased the transcriptional activity of HNF4α, resulting in the increase of miR-467b-3p and subsequent decrease of GPAT1. HNF4α/miR-467b-3p/GPAT1 signaling also was observed in human samples with hepatic steatosis.. Our findings establish a novel mechanism by which 6-G improves NAFLD. This suggests that targeting of the HNF4α/miR-467b-3p/GPAT1 cascade may be used as a potential therapeutic strategy to control NAFLD. Topics: 1-Acylglycerol-3-Phosphate O-Acyltransferase; Animals; Catechols; Disease Models, Animal; Fatty Alcohols; Gene Expression; Gene Expression Regulation; Genes, Reporter; Hepatocyte Nuclear Factor 4; Humans; Lipid Metabolism; Male; Mice; MicroRNAs; Non-alcoholic Fatty Liver Disease; RNA Interference; Structure-Activity Relationship | 2021 |
6-gingerol ameliorates age-related hepatic steatosis: Association with regulating lipogenesis, fatty acid oxidation, oxidative stress and mitochondrial dysfunction.
The prevalence of NAFLD increases with age. As the main active ingredient of ginger, 6-gingerol significantly improves lipid metabolism abnormalities in adult rodents. However, few studies have reported its effect on age-related NAFLD. This study was to investigate the effects of 6-gingerol on age-related hepatic steatosis and its potential targets. As expected, 6-gingerol dramatically normalized the hepatic triglyceride content, plasma insulin and HOMA-IR index of ageing rats. Mechanistically, 6-gingerol affected lipid metabolism by increasing β-oxidation and decreasing lipogenesis through activation of PPARα and CPT1α and inhibition of DGAT-2. Furthermore, 6-gingerol reversed the decreases in citrate, Cs and ATP, lessened the damage caused by ROS, and upregulated mitochondrial marker enzymes NOX, SDH, and SIRT3 in the ageing liver, indicating its ability to strengthen mitochondrial function. Our results showed 6-gingerol exerted a positive effect on insulin sensitivity by regulating Akt. In conclusion, the hepatic anti-steatotic effect of 6-gingerol is associated with inhibition of de novo lipogenesis, upregulation of fatty acid oxidation, reduction in oxidative stress and synergistic enhancement of mitochondrial function. Topics: Aging; Animals; Catechols; Cholesterol; Fatty Acids; Fatty Alcohols; Lipid Metabolism; Liver; Male; MicroRNAs; Mitochondria; Non-alcoholic Fatty Liver Disease; Oxidation-Reduction; Oxidative Stress; Rats, Sprague-Dawley; Triglycerides | 2019 |
6-gingerol protects against nutritional steatohepatitis by regulating key genes related to inflammation and lipid metabolism.
Non-alcoholic fatty liver disease, including non-alcoholic steatohepatitis (NASH), appears to be increasingly common worldwide. The aim of the study was to investigate the effects of 6-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone), a bioactive ingredient of plants belonging to the Zingiberaceae family, on experimental models of NASH. In HepG2 cells, 6-gingerol (100 μmol/L) treatment inhibited free fatty acids mixture (0.33 mmol/L palmitate and 0.66 mmol/L oleate)-induced triglyceride and inflammatory marker accumulations. Male C57BL/6 mice were fed with a methionine and choline-deficient (MCD) diet to induce steatohepatitis. After four weeks of MCD diet feeding, the mice were dosed orally with 6-gingerol (25, 50 or 100 mg/kg/day) once daily for another four weeks. 6-Gingerol (100 mg/kg/day) attenuated liver steatosis and necro-inflammation in MCD diet-fed mice. The expressions of inflammatory cytokine genes, including those for monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin-6, and nuclear transcription factor (NF-κB), which were increased in the livers of MCD diet-fed mice, were attenuated by 6-gingerol. 6-Gingerol possesses a repressive property on hepatic steatosis, which is associated with induction of peroxisome proliferator-activated receptor α. Our study demonstrated the protective role of 6-gingerol in ameliorating nutritional steatohepatitis. The effect was mediated through regulating key genes related to lipid metabolism and inflammation. Topics: Animals; Catechols; Chemokine CCL2; Choline Deficiency; Disease Models, Animal; Fatty Alcohols; Fatty Liver; Inflammation; Interleukin-6; Lipid Metabolism; Male; Methionine; Mice; Mice, Inbred C57BL; NF-kappa B; Non-alcoholic Fatty Liver Disease; Plant Extracts; Tumor Necrosis Factor-alpha | 2015 |
[6]-gingerol dampens hepatic steatosis and inflammation in experimental nonalcoholic steatohepatitis.
The aim of the study was to investigate the effects of [6]-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) in experimental models of non-alcoholic steatohepatitis. HepG2 cells were exposed to 500 µmol/l oleic acid (OA) for 24 h and preincubated for an additional 24 h with [6]-gingerol (25, 50 or 100 µmol/l). [6]-Gingerol (100 µmol/l) inhibited OA-induced triglyceride and inflammatory marker accumulation in HepG2 cells. After being fed a high-fat diet (HFD) for 2 weeks, male golden hamsters were dosed orally with [6]-gingerol (25, 50 or 100 mg/kg/day) once daily for 8 weeks while maintained on HFD. [6]-Gingerol (100 mg/kg/day) alleviated liver steatosis, inflammation, and reversed plasma markers of metabolic syndrome in HFD-fed hamsters. The expression of inflammatory cytokine genes and nuclear transcription factor-κB (NF-κB) were increased in the HFD group; these effects were attenuated by [6]-gingerol. The hepatic mRNA expression of lipogenic genes such as liver X receptor-α, sterol regulating element binding protein-1c and its target genes including acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase 1, and acyl-CoA:diacylglycerol acyltransferase 2 in HFD-fed hamsters was also blocked by [6]-gingerol. [6]-Gingerol may attenuate HFD-induced steatohepatitis by downregulating NF-κB-mediated inflammatory responses and reducing hepatic lipogenic gene expression. Topics: Animals; Catechols; Cholesterol; Cricetinae; Cytokines; Diet, High-Fat; Disease Models, Animal; Fatty Alcohols; Hep G2 Cells; Humans; Inflammation; Liver; Male; Non-alcoholic Fatty Liver Disease; Triglycerides | 2015 |