gingerol and Diabetic-Retinopathy

gingerol has been researched along with Diabetic-Retinopathy* in 2 studies

Other Studies

2 other study(ies) available for gingerol and Diabetic-Retinopathy

ArticleYear
Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms.
    Molecular vision, 2016, Volume: 22

    Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes.. Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels.. Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract-treated group compared to the vehicle-treated group.. The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation.

    Topics: Administration, Oral; Angiogenesis Inhibitors; Animals; Anti-Inflammatory Agents; Blood Glucose; Blotting, Western; Catechols; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Enzyme-Linked Immunosorbent Assay; Fatty Alcohols; Female; Immunohistochemistry; Male; NF-kappa B; Phosphorylation; Rats; Rats, Wistar; Retinal Neovascularization; Retinal Vessels; Tumor Necrosis Factor-alpha; Vascular Endothelial Growth Factor A; Zingiber officinale

2016
In vitro and in vivo inhibition of aldose reductase and advanced glycation end products by phloretin, epigallocatechin 3-gallate and [6]-gingerol.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2016, Volume: 84

    Hyperglycemic stress activates polyol pathway and aldose reductase (AR) key enzyme responsible for generating secondary complications during diabetes. In this study the therapeutic potential of phloretin, epigallocatechin 3-gallate (EGCG) and [6]-gingerol were evaluated for anti-glycating and AR inhibitory activity in vitro and in vivo systems. Human retinal pigment epithelial (HRPE) cells were induced with high glucose supplemented with the phloretin, EGCG and [6]-gingerol. Aldose reductase activity, total advanced glycation end products (AGEs) and enzyme inhibitor kinetics were assessed. Male C57BL/6J mice were randomly assigned to one of the different treatments (bioactive compounds at 2 concentrations each) with either a low fat diet or high fat diet (HFD). After sixteen weeks, AGE accumulation and AR activity was determined in heart, eyes and kidney. High glucose induced toxicity decreased cell viability compared to the untreated cells and AR activity increased to 2-5 folds from 24 to 96h. Pre-treatment of cells with phloretin, EGCG and [6]-gingerol improved cell viability and inhibited AR activity. The enzyme inhibition kinetics followed a non-competitive mode of inhibition for phloretin and EGCG whereas [6]-gingerol indicated uncompetitive type of inhibition against AR. Data from the animal studies showed high plasma glucose levels in HFD group over time, compared to the low fat diet. HFD group developed cataract and AR activity increased to 4 folds compared to the group with low fat diet. Administration of EGCG, phloretin and [6]-gingerol significantly reduced blood sugar levels, AGEs accumulation, and AR activity. These findings could provide a basis to consider using the selected dietary components alone or in combination with other therapeutic approaches to prevent diabetes-related complications in humans.

    Topics: Aldehyde Reductase; Animals; Biomarkers; Blood Glucose; Catechin; Catechols; Cell Line; Cell Survival; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Diet, High-Fat; Dose-Response Relationship, Drug; Enzyme Inhibitors; Fatty Alcohols; Glycation End Products, Advanced; Humans; Hypoglycemic Agents; Kidney; Kinetics; Male; Mice, Inbred C57BL; Myocardium; Phloretin; Retinal Pigment Epithelium; Time Factors

2016