gingerol has been researched along with Colonic-Neoplasms* in 8 studies
1 review(s) available for gingerol and Colonic-Neoplasms
Article | Year |
---|---|
Cancer preventive properties of ginger: a brief review.
Ginger, the rhizome of Zingiber officinalis, one of the most widely used species of the ginger family, is a common condiment for various foods and beverages. Ginger has a long history of medicinal use dating back 2500 years. Ginger has been traditionally used from time immemorial for varied human ailments in different parts of the globe, to aid digestion and treat stomach upset, diarrhoea, and nausea. Some pungent constituents present in ginger and other zingiberaceous plants have potent antioxidant and anti-inflammatory activities, and some of them exhibit cancer preventive activity in experimental carcinogenesis. The anticancer properties of ginger are attributed to the presence of certain pungent vallinoids, viz. [6]-gingerol and [6]-paradol, as well as some other constituents like shogaols, zingerone etc. A number of mechanisms that may be involved in the chemopreventive effects of ginger and its components have been reported from the laboratory studies in a wide range of experimental models. Topics: Animals; Anticarcinogenic Agents; Breast Neoplasms; Catechols; Colonic Neoplasms; Fatty Alcohols; Gastrointestinal Neoplasms; Guaiacol; Humans; Ketones; Oils, Volatile; Skin Neoplasms; Tumor Cells, Cultured; Zingiber officinale | 2007 |
7 other study(ies) available for gingerol and Colonic-Neoplasms
Article | Year |
---|---|
Gastroprotective [6]-Gingerol Aspirinate as a Novel Chemopreventive Prodrug of Aspirin for Colon Cancer.
A growing body of research suggests daily low-dose aspirin (ASA) reduces heart diseases and colorectal cancers. However, the major limitation to the use of aspirin is its side effect to cause ulceration and bleeding in the gastrointestinal tract. Preclinical studies have shown that ginger constituents ameliorate ASA-induced gastric ulceration. We here report the design and synthesis of a novel prodrug of aspirin, [6]-gingerol aspirinate (GAS). Our data show that GAS exerts enhanced anti-cancer properties in vitro and superior gastroprotective effects in mice. GAS was also able to survive stomach acid and decomposed in intestinal linings or after absorption to simultaneously release ASA and [6]-gingerol. We further present that GAS inactivates both COX-1 and COX-2 equally. Our results demonstrate the enhanced anticancer properties along with gastroprotective effects of GAS, suggesting that GAS can be a therapeutic equivalent for ASA in inflammatory and proliferative diseases without the deleterious effects on stomach mucosa. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Aspirin; Catechols; Cell Line, Tumor; Cell Survival; Colonic Neoplasms; Cyclooxygenase 1; Cyclooxygenase 2; Fatty Alcohols; Female; Humans; Mice; Prodrugs; Stomach Ulcer | 2017 |
Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer.
There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles. Topics: Animals; Antineoplastic Agents, Phytogenic; Catechols; Cell Line; Cell Line, Tumor; Colitis, Ulcerative; Colonic Neoplasms; Fatty Alcohols; Female; Humans; Inflammatory Bowel Diseases; Mice; Mice, Inbred C57BL; Nanoparticles; Phytotherapy; Zingiber officinale | 2016 |
[10]-Gingerol induces mitochondrial apoptosis through activation of MAPK pathway in HCT116 human colon cancer cells.
The present study was designed to investigate the molecular mechanisms of [10]-gingerol activity against HCT116 human colon cancer cells. [10]-Gingerol inhibited the proliferation of HCT116 cells by 50% at a concentration of 30 μM, and this inhibition was dose-dependent accompanied by the morphological changes indicative of apoptosis. Furthermore, flow cytometric analysis showed that [10]-gingerol increased DNA in the sub-G1 phase of the cell cycle, and the extent of apoptosis was confirmed by Annexin V and PI double staining. Analysis of the mechanism of these events indicated that [10]-gingerol-treated cells exhibited an increased ratio of Bax/Bcl-2, resulting in the activation of caspase-9, caspase-3, and poly-ADP-ribose polymerase in a dose-dependent manner, which are hallmarks of apoptosis. Moreover, [10]-gingerol-induced apoptosis was accompanied by phosphorylation of the mitogen-activated protein kinase (MAPKs) family, c-Jun N-terminal kinase (JNK), p38 MAPK (p38), and extracellular signal-regulated kinase (ERK). This is the first report to demonstrate the cytotoxic effect of [10]-gingerol on human colon cancer cells, as well as the first to describe its possible chemotherapeutic potentials. Topics: Apoptosis; bcl-2-Associated X Protein; Caspase 3; Catechols; Cell Cycle; Colonic Neoplasms; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Fatty Alcohols; HCT116 Cells; Humans; JNK Mitogen-Activated Protein Kinases; MAP Kinase Signaling System; Mitochondria; Mitogen-Activated Protein Kinases; p38 Mitogen-Activated Protein Kinases; Proto-Oncogene Proteins c-bcl-2 | 2015 |
[6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.
We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer. Topics: Anticarcinogenic Agents; Antineoplastic Agents, Phytogenic; Apoptosis; Carcinogens; Caspases; Catechols; Cell Line, Tumor; Colon; Colonic Neoplasms; Extracellular Signal-Regulated MAP Kinases; Fatty Alcohols; Humans; JNK Mitogen-Activated Protein Kinases; Signal Transduction; Tetradecanoylphorbol Acetate; Transcription Factor AP-1; Zingiber officinale | 2014 |
Ginger's (Zingiber officinale Roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro.
Ginger's (Zingiber officinale Roscoe) natural bioactives, specifically ginger extract and 6-gingerol, were measured for their in vitro inhibition of two key aspects of colon cancer biology--cancer cell proliferation and angiogenic potential of endothelial cell tubule formation. Ginger extract was obtained via column distillation, while the 6-gingerol was purchased from Calbiochem. Antiproliferation activity was assessed through tritiated thymidine ([(3)H]Tdr) incorporation studies of YYT colon cancer cells; the anti-angiogenic ability of gingerol was assessed by a Matrigel assays using MS1 endothelial cells. These selected ginger bioactives had: 1) a direct effect on YYT rat cancer cell proliferation (6-1.5% ginger extract; 100-4 microM 6-gingerol); 2) an indirect effect on MS1 endothelial cell function either at the level of endothelial cell proliferation or through inhibition of MS1 endothelial cell tube formation (100-0.8 microM). Compound 6-gingerol was most effective at lower doses in inhibiting endothelial cell tube formation. These in vitro studies show that 6-gingerol has two types of antitumor effects: 1) direct colon cancer cell growth suppression, and 2) inhibition of the blood supply of the tumor via angiogenesis. Further research is warranted to test 6-gingerol in animal studies as a potential anticancer plant bioactive in the complementary treatment of cancer. Topics: Adenocarcinoma; Angiogenesis Inhibitors; Animals; Antineoplastic Agents, Phytogenic; Catechols; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Fatty Alcohols; Plant Extracts; Rats; Zingiber officinale | 2009 |
[6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase.
[6]-Gingerol, a natural component of ginger, exhibits anti-inflammatory and antitumorigenic activities. Despite its potential efficacy in cancer, the mechanism by which [6]-gingerol exerts its chemopreventive effects remains elusive. The leukotriene A(4) hydrolase (LTA(4)H) protein is regarded as a relevant target for cancer therapy. Our in silico prediction using a reverse-docking approach revealed that LTA(4)H might be a potential target of [6]-gingerol. We supported our prediction by showing that [6]-gingerol suppresses anchorage-independent cancer cell growth by inhibiting LTA(4)H activity in HCT116 colorectal cancer cells. We showed that [6]-gingerol effectively suppressed tumor growth in vivo in nude mice, an effect that was mediated by inhibition of LTA(4)H activity. Collectively, these findings indicate a crucial role of LTA(4)H in cancer and also support the anticancer efficacy of [6]-gingerol targeting of LTA(4)H for the prevention of colorectal cancer. Topics: Animals; Anti-Inflammatory Agents; Catechols; Cell Division; Cell Line, Tumor; Colonic Neoplasms; Colorectal Neoplasms; Epoxide Hydrolases; Fatty Alcohols; Female; HCT116 Cells; Humans; Male; Mice; Mice, Nude; Models, Molecular; Protein Conformation; Zingiber officinale | 2009 |
6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression.
Ginger, the rhizome of Zingiber officinale, is a traditional medicine with anti-inflammatory and anticarcinogenic properties. This study examined the growth inhibitory effects of the structurally related compounds 6-gingerol and 6-shogaol on human cancer cells. 6-Shogaol [1-(4-hydroxy-3-methoxyphenyl)-4-decen-3-one] inhibits the growth of human cancer cells and induces apoptosis in COLO 205 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of 6-shogaol-induced apoptosis, preceding cytochrome c release, caspase activation, and DNA fragmentation. Up-regulation of Bax, Fas, and FasL, as well as down-regulation of Bcl-2 and Bcl-X(L )were observed in 6-shogaol-treated COLO 205 cells. N-acetylcysteine (NAC), but not by other antioxidants, suppress 6-shogaol-induced apoptosis. The growth arrest and DNA damage (GADD)-inducible transcription factor 153 (GADD153) mRNA and protein is markedly induced in a time- and concentration-dependent manner in response to 6-shogaol. Topics: Adenocarcinoma; Apoptosis; Caspases; Catechols; Cell Line, Tumor; Colonic Neoplasms; Colorectal Neoplasms; Fatty Alcohols; Humans; Membrane Potentials; Mitochondrial Membranes; Plant Extracts; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; RNA, Neoplasm; Transcription Factor CHOP; Zingiber officinale | 2008 |