gingerol and Carcinoma--Hepatocellular

gingerol has been researched along with Carcinoma--Hepatocellular* in 3 studies

Other Studies

3 other study(ies) available for gingerol and Carcinoma--Hepatocellular

ArticleYear
Molecular mechanism inhibiting human hepatocarcinoma cell invasion by 6-shogaol and 6-gingerol.
    Molecular nutrition & food research, 2012, Volume: 56, Issue:8

    We previously demonstrated that 6-shogaol and 6-gingerol, two active compounds in ginger (Zingiber officinale), possess antiinvasive activity against highly metastatic hepatoma cells. The aims of this study were to evaluate the inhibitory effect and molecular mechanism underlying the transcription and translation of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator (uPA) in Hep3B cells as well as the antiangiogenic activity of 6-gingerol and 6-shogaol.. By gelatin zymography and luciferase reporter gene assays, we found that 6-gingerol and 6-shogaol regulate MMP-2/-9 transcription. Moreover, 6-gingerol directly decreased expression of uPA, but the 6-shogaol-mediated decrease in uPA was accompanied by up-regulation of plasminogen activator inhibitor (PAI)-1. 6-Gingerol and 6-shogaol concentrations of ≥ 10 μM and ≥ 2.5 μM, respectively, significantly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling, the activation of NF-κB, and the translocation of NF-κB and STAT3. Incubation of 6-gingerol or 6-shogaol with human umbilical vein endothelial cells or rat aortas significantly attenuated tube formation.. 6-Shogaol and 6-gingerol effectively inhibit invasion and metastasis of hepatocellular carcinoma through diverse molecular mechanisms, including inhibition of the MAPK and PI3k/Akt pathways and NF-κB and STAT3 activities to suppress expression of MMP-2/-9 and uPA and block angiogenesis.

    Topics: Angiogenesis Inhibitors; Animals; Carcinoma, Hepatocellular; Catechols; Fatty Alcohols; Humans; Interleukin-8; Liver Neoplasms; MAP Kinase Signaling System; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Matrix Metalloproteinases; NF-kappa B; Phosphatidylinositol 3-Kinases; Plasminogen Activator Inhibitor 1; Proto-Oncogene Proteins c-akt; Rats; STAT3 Transcription Factor; Tumor Cells, Cultured; Urokinase-Type Plasminogen Activator; Vascular Endothelial Growth Factor A

2012
Genotoxic effect of 6-gingerol on human hepatoma G2 cells.
    Chemico-biological interactions, 2010, Apr-15, Volume: 185, Issue:1

    6-gingerol, a major component of ginger, has antioxidant, anti-apoptotic, and anti-inflammatory activities. However, some dietary phytochemicals possess pro-oxidant effects as well, and the risk of adverse effects is increased by raising the use of doses. The aim of this study was to assess the genotoxic effects of 6-gingerol and to clarify the mechanisms, using human hepatoma G2 (HepG2) cells. Exposure of the cells to 6-gingerol caused significant increase of DNA migration in comet assay, increase of micronuclei frequencies at high concentrations at 20-80 and 20-40 microM, respectively. These results indicate that 6-gingerol caused DNA strand breaks and chromosome damage. To further elucidate the underlying mechanisms, we tested lysosomal membrane stability, mitochondrial membrane potential, the intracellular generation of reactive oxygen species (ROS) and reduced glutathione (GSH). In addition, the level of oxidative DNA damage was evaluated by immunocytochemical analysis on 8-hydroxydeoxyguanosine (8-OHdG). Results showed that lysosomal membrane stability was reduced after treatment by 6-gingerol (20-80 microM) for 40 min, mitochondrial membrane potential decreased after treatment for 50 min, GSH and ROS levels were significantly increased after treatment for 60 min. These suggest 6-gingerol induces genotoxicity probably by oxidative stress; lysosomal and mitochondrial damage were observed in 6-gingerol-induced toxicity.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Carcinoma, Hepatocellular; Catechols; Cell Proliferation; Deoxyguanosine; DNA Breaks; Fatty Alcohols; Glutathione; Hep G2 Cells; Hepatocytes; Humans; Intracellular Membranes; Lysosomes; Membrane Potential, Mitochondrial; Mutagens; Reactive Oxygen Species

2010
Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells.
    Molecular nutrition & food research, 2010, Volume: 54, Issue:11

    Hepatocellular carcinoma is the most common type of liver cancer and is highly metastatic. Metastasis is considered to be the major cause of death in cancer patients. Ginger is a natural dietary rhizome with anti-oxidative, anti-inflammatory, and anti-carcinogenic activities. The aims of this study were to evaluate the anti-invasion activity of 6-shogaol and 6-gingerol, two compounds found in ginger, on hepatoma cells.. The migratory and invasive abilities of phorbol 12-myristate 13-acetate (PMA)-treated HepG2 and PMA-untreated Hep3B cells were both reduced in a dose-dependent manner by treatment with 6-shogaol and 6-gingerol. Upon incubation of PMA-treated HepG2 cells and PMA-untreated Hep3B cells with 6-shogaol and 6-gingerol, matrix metalloproteinase (MMP)-9 activity decreased, whereas the expression of tissue inhibitor metalloproteinase protein (TIMP)-1 increased in both cell types. Additionally, urokinase-type plasminogen activator activity was dose-dependently decreased in Hep3B cells after incubation with 6-shogaol for 24 h. Analysis with semi-quantitative reverse transcription-PCR showed that the regulation of MMP-9 by 6-shogaol and 6-gingerol and the regulation of TIMP-1 by 6-shogaol in Hep3B cells may on the transcriptional level.. These results suggest that 6-shogaol and 6-gingerol might both exert anti-invasive activity against hepatoma cells through regulation of MMP-9 and TIMP-1 and that 6-shogaol could further regulate urokinase-type plasminogen activity.

    Topics: Carcinoma, Hepatocellular; Catechols; Fatty Alcohols; Hep G2 Cells; Humans; Liver Neoplasms; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Neoplasm Invasiveness; Signal Transduction; Tissue Inhibitor of Metalloproteinase-1; Zingiber officinale

2010