gingerol and Adenocarcinoma

gingerol has been researched along with Adenocarcinoma* in 6 studies

Other Studies

6 other study(ies) available for gingerol and Adenocarcinoma

ArticleYear
Anticancer Efficacy of 6-Gingerol with Paclitaxel against Wild Type of Human Breast Adenocarcinoma.
    Molecules (Basel, Switzerland), 2022, Apr-22, Volume: 27, Issue:9

    Breast cancer is one of the most common malignant neoplasms, and despite the dynamic development of anticancer therapies, 5-year survival in the metastatic stage is still less than 30%. 6-Gingerol (1-[4'-hydroxy-3'-methoxyphenyl]-5-hydroxy-3-decanone) is a substance contained in ginger, which exhibits anti-cancer properties. Paclitaxel is a cytostatic substance used to treat breast cancer, but its therapeutically effective dose has many adverse effects. The aim of the presented study was to assess the anticancer effect of 6-gingerol and the possibility of increasing the effectiveness of Paclitaxel in the death induction of wild type human breast cancer cells. MCF-7/WT cells were treated with drugs-6-gingerol and paclitaxel at selected concentrations. The mitochondrial activity assay, caspase 7 activity assay, ATP assay, microscopy studies, and RT-PCR assays were performed to evaluate the antitumor activity and mechanism of action of both compounds, alone and in combination. After 72 h of incubation, the mitochondrial activity showed that the combination of 5 nM Paclitaxel with 10 µM 6-Gingerol led to the same decrease in viability as the use of 20 nM Paclitaxel alone; 10 µM 6-Gingerol led to an enhancement of caspase 7 activity, with the highest activity observed after 24 h of incubation. A real-time PCR study showed that 6-Gingerol induces the simultaneous transcription of Bax with TP53 genes in large excess to BCL-2. In contrast, 5 nM Paclitaxel induces TP53 transcription in excess of BCL-2 and Bax. Our results suggest that 6-Gingerol may act as a cell death-inducing agent in cancer cells and, in combination with paclitaxel, and increase the effectiveness of conventional chemotherapy.

    Topics: Adenocarcinoma; Apoptosis; bcl-2-Associated X Protein; Breast Neoplasms; Caspase 7; Catechols; Cell Line, Tumor; Fatty Alcohols; Female; Humans; Paclitaxel

2022
[6]-Gingerol-induced cell cycle arrest, reactive oxygen species generation, and disruption of mitochondrial membrane potential are associated with apoptosis in human gastric cancer (AGS) cells.
    Journal of biochemical and molecular toxicology, 2018, Volume: 32, Issue:10

    Ginger (Zingiber officinale Roscoe), a monocotyledonous herb, is widely used as an herbal medicine owing to the phytoconstituents it possesses. In the current study, the quantity of [6]-gingerol, the major phenolic ketone, in the fresh ginger and dried ginger rhizome was found to be 6.11 µg/mg and 0.407 µg/mg. Furthermore, [6]-gingerol was assessed for its antiapoptotic effects in human gastric adenocarcinoma (AGS) cells evidenced by acridine orange/ethidium bromide staining technique and Annexin-V assay. An increase in reactive oxygen species (ROS) generation led to a decrease in mitochondrial membrane potential (MMP) and subsequent induction of apoptosis. Results disclose that perturbations in MMP are associated with deregulation of Bax/Bcl-2 ratio at protein level, which leads to upregulation of cytochrome-c triggering the caspase cascade. These enduringly suggest that [6]-gingerol can be effectively used for targeting the mitochondrial energy metabolism to manage gastric cancer cells.

    Topics: Acridine Orange; Adenocarcinoma; Annexin A5; Apoptosis; bcl-2-Associated X Protein; Caspases; Catechols; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chromatography, High Pressure Liquid; Cytochromes c; Ethidium; Fatty Alcohols; Humans; Membrane Potential, Mitochondrial; Plant Extracts; Protein Binding; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Stomach Neoplasms; Up-Regulation; Zingiber officinale

2018
Assessment of anti-cancerous potential of 6-gingerol (Tongling White Ginger) and its synergy with drugs on human cervical adenocarcinoma cells.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2017, Volume: 109, Issue:Pt 2

    The anti-cancerous activity of 6-gingerol extracted from Tongling White Ginger was investigated. 6-Gingerol inhibited the growth of HeLa cells with IC50 (96.32 μM) and IC80 (133.01 μM) and led to morphological changes, induced the cell cycle arrest in G0/G1-phase and ultimately resulted into apoptosis. Among cell cycle-related genes and proteins, the expression of cyclin (A, D1, E1) reduced, while of CDK-1, p21 and p27 showed slight decrease, except cyclin B1 and E1 (protein). Western blotting reported the induction of apoptosis with an increased Bax/Bcl-2 ratio, release of cytochrome c, cleavage of caspase-3, -8, -9 and PRPP in treated cells. 6-Gingerol activated AMPK, but inhibited PI3K/AKT phosphorylation with reduced P70S6K expression and also suppressed the mTOR phosphorylation. 6-Gingerol with 5-FU and Ptx resulted in 83.2% and 52% inhibition respectively, this synergy have stimulated apoptosis proteins more efficiently as compared to 6-Gingerol alone (10.75%) under in vitro conditions.

    Topics: Adenocarcinoma; Antineoplastic Agents; Apoptosis; Caspase 3; Catechols; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Drug Evaluation, Preclinical; Drug Synergism; Fatty Alcohols; Female; Fluorouracil; Humans; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Uterine Cervical Neoplasms; Zingiber officinale

2017
Inhibition of the autophagy flux by gingerol enhances TRAIL-induced tumor cell death.
    Oncology reports, 2015, Volume: 33, Issue:5

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a primary anticancer agent and a member of the tumor necrosis factor family that selectively induces apoptosis in various tumor cells, but not in normal cells. Gingerol is a major ginger component with anti-inflammatory and anti‑tumorigenic activities. Autophagy flux is the complete process of autophagy, in which the autophagosomes are lysed by lysosomes. The role of autophagy in cell death or cell survival is controversial. A549 adenocarcinoma cells are TRAIL-resistant. In the present study, we showed that treatment with TRAIL slightly induced cell death, but gingerol treatment enhanced the TRAIL-induced cell death in human lung cancer cells. The combination of gingerol and TRAIL increased accumulation of microtubule-associated protein light chain 3-II and p62, confirming the inhibited autophagy flux. Collectively, our results suggest that gingerol sensitizes human lung cancer cells to TRAIL-induced apoptosis by inhibiting the autophagy flux.

    Topics: Adaptor Proteins, Signal Transducing; Adenocarcinoma; Apoptosis; Autophagy; Autophagy-Related Protein 8 Family; Catechols; Cell Line, Tumor; Cell Survival; Fatty Alcohols; Humans; Lung Neoplasms; Microfilament Proteins; Sequestosome-1 Protein; TNF-Related Apoptosis-Inducing Ligand

2015
Ginger's (Zingiber officinale Roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro.
    Phytotherapy research : PTR, 2009, Volume: 23, Issue:5

    Ginger's (Zingiber officinale Roscoe) natural bioactives, specifically ginger extract and 6-gingerol, were measured for their in vitro inhibition of two key aspects of colon cancer biology--cancer cell proliferation and angiogenic potential of endothelial cell tubule formation. Ginger extract was obtained via column distillation, while the 6-gingerol was purchased from Calbiochem. Antiproliferation activity was assessed through tritiated thymidine ([(3)H]Tdr) incorporation studies of YYT colon cancer cells; the anti-angiogenic ability of gingerol was assessed by a Matrigel assays using MS1 endothelial cells. These selected ginger bioactives had: 1) a direct effect on YYT rat cancer cell proliferation (6-1.5% ginger extract; 100-4 microM 6-gingerol); 2) an indirect effect on MS1 endothelial cell function either at the level of endothelial cell proliferation or through inhibition of MS1 endothelial cell tube formation (100-0.8 microM). Compound 6-gingerol was most effective at lower doses in inhibiting endothelial cell tube formation. These in vitro studies show that 6-gingerol has two types of antitumor effects: 1) direct colon cancer cell growth suppression, and 2) inhibition of the blood supply of the tumor via angiogenesis. Further research is warranted to test 6-gingerol in animal studies as a potential anticancer plant bioactive in the complementary treatment of cancer.

    Topics: Adenocarcinoma; Angiogenesis Inhibitors; Animals; Antineoplastic Agents, Phytogenic; Catechols; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Fatty Alcohols; Plant Extracts; Rats; Zingiber officinale

2009
6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression.
    Molecular nutrition & food research, 2008, Volume: 52, Issue:5

    Ginger, the rhizome of Zingiber officinale, is a traditional medicine with anti-inflammatory and anticarcinogenic properties. This study examined the growth inhibitory effects of the structurally related compounds 6-gingerol and 6-shogaol on human cancer cells. 6-Shogaol [1-(4-hydroxy-3-methoxyphenyl)-4-decen-3-one] inhibits the growth of human cancer cells and induces apoptosis in COLO 205 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of 6-shogaol-induced apoptosis, preceding cytochrome c release, caspase activation, and DNA fragmentation. Up-regulation of Bax, Fas, and FasL, as well as down-regulation of Bcl-2 and Bcl-X(L )were observed in 6-shogaol-treated COLO 205 cells. N-acetylcysteine (NAC), but not by other antioxidants, suppress 6-shogaol-induced apoptosis. The growth arrest and DNA damage (GADD)-inducible transcription factor 153 (GADD153) mRNA and protein is markedly induced in a time- and concentration-dependent manner in response to 6-shogaol.

    Topics: Adenocarcinoma; Apoptosis; Caspases; Catechols; Cell Line, Tumor; Colonic Neoplasms; Colorectal Neoplasms; Fatty Alcohols; Humans; Membrane Potentials; Mitochondrial Membranes; Plant Extracts; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; RNA, Neoplasm; Transcription Factor CHOP; Zingiber officinale

2008