germanium and Cadaver

germanium has been researched along with Cadaver* in 1 studies

Other Studies

1 other study(ies) available for germanium and Cadaver

ArticleYear
Estimating 241Am activity in the body: comparison of direct measurements and radiochemical analyses.
    Radiation protection dosimetry, 2009, Volume: 134, Issue:2

    The assessment of dose and ultimately the health risk from intakes of radioactive materials begins with estimating the amount actually taken into the body. An accurate estimate provides the basis to best assess the distribution in the body, the resulting dose and ultimately the health risk. This study continues the time-honoured practice of evaluating the accuracy of results obtained using in vivo measurement methods and techniques. Results from the radiochemical analyses of the (241)Am activity content of tissues and organs from four donors to the United States Transuranium and Uranium Registries (USTUR) were compared with the results from direct measurements of radioactive material in the body performed in vivo and post-mortem. Two were whole-body donations and two were partial-body donations. The (241)Am lung activity estimates ranged from 1 to 30 Bq in the four cases. The (241)Am activity in the lungs determined from the direct measurements were within 40% of the radiochemistry results in three cases and within a factor of 2 for the other case. However, in one case the post-mortem direct measurement estimate was a factor of 10 higher than the radiochemistry result for lung activity, most probably due to underestimating the skeletal contribution to the measured count rate over the lungs. The direct measurement estimates of liver activity ranged from 2 to 60 Bq and were consistently lower than the radiochemistry results. The skeleton was the organ with the highest deposition of (241)Am activity in all four cases. The skeletal activity estimates ranged from 30 to 300 Bq. The skeletal activity obtained from measurements over the forehead were within 20% of the radiochemistry results in three cases and differed by 78% in the other case. The results from this study suggest that the measurement methods, data analysis methods and calibration techniques used at the In Vivo Radiobioassay and Research Facility can be used to quantify the activity in the lungs, skeleton and liver when (241)Am activity is present in all three organs. The adjustment method used to account for the contribution from activity in other organs improved the agreement between the direct measurement results and the radiochemistry results for activity in the lungs and skeleton. The method appeared to overestimate the contribution from the other organs to the liver activity measurements, although the low activity levels complicated the analysis. The unadjusted liver activity estimates from t

    Topics: Acute Disease; Adult; Aged, 80 and over; Americium; Autopsy; Body Burden; Bone and Bones; Cadaver; Germanium; Humans; Liver; Lung; Lung Neoplasms; Male; Mitral Valve; Myocardial Infarction; Plutonium; Prostatic Neoplasms; Radiochemistry; Tissue Distribution; Tissue Donors; Young Adult

2009