germacrone and Reperfusion-Injury

germacrone has been researched along with Reperfusion-Injury* in 2 studies

Other Studies

2 other study(ies) available for germacrone and Reperfusion-Injury

ArticleYear
Germacrone protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy processes in PC12 cells.
    BMC complementary medicine and therapies, 2020, Mar-07, Volume: 20, Issue:1

    Germacrone is an anti-inflammatory ingredient in the Chinese medicine zedoary turmeric. The purpose of this study was to explore the protective mechanism of germacrone against PC12 cells injury caused by oxygen-glucose deprivation/reperfusion (OGD/R).. OGD/R injury model of PC12 cells was established by using OGD/R (2 h/24 h). The cell viability was assessed by MTT assay and LDH release. The ultrastructure of cells was observed by transmission electron microscopy (TEM). The expression of autophagy related proteins in cells was determined by Western Blot.. The results of ultrastructural observation showed that PC12 cells damaged by OGD/R showed typical autophagy characteristics. In addition, OGD/R observably up-regulated the expression of autophagy related proteins: the class III type phosphoinositide 3-kinase (PI3K III), light chain 3(LC3), and Beclin-1 in PC12 cells, and inhibited the expression of the class I type phosphoinositide 3-kinase (PI3K I), Protein kinase B (Akt), the mammalian target of rapamycin (mTOR), and B-cell lymphoma 2(Bcl-2) proteins. Furthermore, germacrone increased the cell viability of OGD/R-damaged PC12 cells by down-regulating the expression of LC3 protein in cells in a concentration-dependent manner. More importantly, germacrone significantly inhibited the expression of PI3K III, LC3, and Beclin-1 in OGD/R-injured PC12 cells, and up-regulated the expressionof PI3K I, Akt, mTOR, and Bcl-2 proteins in cells, and this inhibited or up-regulated effect was reversed by PI3K I inhibitor (ZSTK474).. The above results indicated that germacrone could inhibit the autophagy effect in OGD/R injury model of PC12 cells, the mechanism of inhibition was regulated by PI3K III/Beclin-1/Bcl-2 and PI3K I/Akt/mTOR pathways, thereby improving the cell viability of PC12 cells and playing a neuroprotective role, which provided a new drug for the treatment of OGD/R.

    Topics: Animals; Autophagy; Cell Survival; Glucose; Molecular Structure; Neuroprotective Agents; Oxygen; PC12 Cells; Rats; Reperfusion Injury; Sesquiterpenes, Germacrane

2020
Germacrone attenuates cerebral ischemia/reperfusion injury in rats via antioxidative and antiapoptotic mechanisms.
    Journal of cellular biochemistry, 2019, Volume: 120, Issue:11

    Germacrone (GM) is an anti-inflammatory compound extracted from Rhizoma curcuma. Here, we strived to investigate the neuroprotective effects of GM in rat models of transient middle cerebral artery occlusion/reperfusion injury. Rats immediately after cerebral ischemia were intraperitoneally injected with GM at doses of 5, 10, and 20 mg/kg. After 1 day of reperfusion, the water content in the brain, infarct volume, and neurological deficits were assessed. Hippocampus neurons were histopathologically examined by hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Activities of glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) in brain tissue were detected. Real-time PCR and Western blotting were utilized to quantify the expression of apoptosis markers, such as caspase-3, Bax, and Bcl-2. The content of phospho-Akt (p-Akt) was also measured using Western blotting. GM treatment markedly decreased the brain water content, infarct volume and the neurological deficits, which was corroborated by attenuated histopathologic change. MDA levels were reduced and activities of GSH, SOD, and GSH-PX were elevated after GM treatment. Caspase-3 and Bax were decreased, and Bcl-2 was increased at both messenger RNA and protein levels by GM treatment. The p-Akt expression was increased by GM. Our data indicated that the neuroprotective effects of GM may attenuate the injuries from cerebral ischemia/reperfusion in rats through antioxidative and antiapoptotic mechanisms.

    Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Brain Diseases; Hippocampus; Male; Oxidation-Reduction; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Sesquiterpenes, Germacrane

2019