geranylgeranylacetone has been researched along with Pulmonary-Fibrosis* in 4 studies
4 other study(ies) available for geranylgeranylacetone and Pulmonary-Fibrosis
Article | Year |
---|---|
Geranylgeranylacetone, an inducer of heat shock protein 70, attenuates pulmonary fibrosis via inhibiting NF-κB/NOX4/ROS signalling pathway in vitro and in vivo.
Idiopathic pulmonary fibrosis (IPF) is a devastating and progressive pulmonary disease which is characterized by epithelial cell damage and extracellular collagen deposition. To date, the therapeutic options for IPF are still very limited, so the relevant mechanisms need to be explored. Heat shock protein 70 (HSP70), which has protective versus antitumor effects on cells under stress, is a member of the heat shock protein family. In the current study, qRT-PCR, western blotting, immunofluorescence staining, and migration assays were used to explore the Epithelial-mesenchymal transition (EMT) process in BEAS-2B cells. Moreover, the role of GGA in the process of pulmonary fibrosis was detected by HE, Masson staining, pulmonary function test and immunohistochemistry in C57BL/6 mice. Our results indicated that GGA, as an inducer of HSP70, enhanced the transformation of BEAS-2B cells from epithelial to mesenchymal cells through the NF-κB/NOX4/ROS (reactive oxygen species) signalling pathway and could significantly reduce apoptosis of BEAS-2B cells induced by TGF-β1(Transforming growth factor β1) in vitro. In vivo studies demonstrated that HSP70-inducing drugs, such as GGA, attenuated pulmonary fibrosis progression induced by bleomycin (BLM). Collectively, these results suggested that overexpression of HSP70 attenuated pulmonary fibrosis induced by BLM in C57BL/6 mice and EMT process induced by TGF-β1 through NF-κB/NOX4/ROS pathway in vitro. Thus, HSP70 might be a potential therapeutic strategy for human lung fibrosis. Topics: Animals; Bleomycin; Epithelial-Mesenchymal Transition; HSP70 Heat-Shock Proteins; Humans; Lung; Mice; Mice, Inbred C57BL; NADPH Oxidase 4; NF-kappa B; Pulmonary Fibrosis; Reactive Oxygen Species; Transforming Growth Factor beta1 | 2023 |
GGA (geranylgeranylacetone) ameliorates bleomycin-induced lung inflammation and pulmonary fibrosis by inhibiting apoptosis and oxidative stress.
Fibrosis is a response to ongoing cellular injury, disruption, and tissue remodeling, the pathogenesis of which is unknown, and is characterized by extracellular matrix deposition. The antifibrotic effect of Geranylgeranylacetone (GGA), as an inducer of Heat shock protein 70 (HSP70), in liver, kidney and pulmonary fibrosis has been supported by multiple preclinical evidence. However, despite advances in our understanding, the precise roles of HSP70 in fibrosis require further investigation. The purpose of this study was to investigate whether GGA could participate in the progression of pulmonary fibrosis in mice through apoptosis, oxidative stress and inflammation.. B-cell lymphoma-2(Bcl-2) and Bcl2-Associated X (Bax) are two proteins related to apoptosis. Anti-apoptotic factor Bcl-2 and pro-apoptotic factor Bax are often involved in the apoptotic process in the form of dimer. Immunofluorescence and Western blot results showed that bleomycin (BLM) and transforming growth factor-β (TGF-β) inhibited Bcl-2 expression and promoted Bax expression in vitro and in vivo, respectively. In contrast, GGA treatment reverses this change. Reactive oxygen species (ROS), Malondialdehyde (MDA) and superoxide dismutase (SOD) are markers of oxidative stress, which often reflect oxidative injury of cells. The detection of ROS, MDA and SOD expression showed that TGF-β and BLM treatment could significantly promote oxidative stress, while GGA treatment could alleviate oxidative stress damage. In addition, BLM significantly elevated Tumor necrosis factor-α(TNF-α), Interleukin1β (IL-1β) and Interleukin 6 (IL-6), while scutellarin reversed the above alterations except for that of GGA.. Taken together, GGA suppressed apoptotic, oxidative stress and inflammation in BLM-induced pulmonary fibrosis. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Bleomycin; Fibrosis; Inflammation; Lung; Mice; Oxidative Stress; Pneumonia; Pulmonary Fibrosis; Reactive Oxygen Species; Superoxide Dismutase; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha | 2023 |
Geranylgeranylacetone alleviates radiation-induced lung injury by inhibiting epithelial-to-mesenchymal transition signaling.
Radiation-induced lung injury (RILI) involves pneumonitis and fibrosis, and results in pulmonary dysfunction. Moreover, RILI can be a fatal complication of thoracic radiotherapy. The present study investigated the protective effect of geranylgeranlyacetone (GGA), an inducer of heat shock protein (HSP)70, on RILI using a C57BL/6 mouse model of RILI developing 6 months subsequent to exposure to 12.5 Gy thoracic radiation. GGA was administered 5 times orally prior and subsequent to radiation exposure, and the results were assessed by histological analysis and western blotting. The results show that late RILI was alleviated by GGA treatment, possibly through the suppression of epithelial‑to‑mesenchymal transition (EMT) marker expression. Based on histological examination, orally administered GGA during the acute phase of radiation injury not only significantly inhibited pro‑surfactant protein C (pro‑SPC) and vimentin expression, but also preserved E‑cadherin expression 6 months after irradiation‑induced injury of the lungs. GGA induced HSP70 and inhibited EMT marker expression in L132 human lung epithelial cells following IR. These data suggest that the prevention of EMT signaling is a key cytoprotective effect in the context of RILI. Thus, HSP70‑inducing drugs, such as GGA, could be beneficial for protection against RILI. Topics: Alveolar Epithelial Cells; Animals; Cell Line; Disease Models, Animal; Diterpenes; Epithelial-Mesenchymal Transition; Female; Gene Expression; HSP70 Heat-Shock Proteins; Mice; Pulmonary Fibrosis; Radiation Injuries; Radiation Pneumonitis; Signal Transduction | 2016 |
Protective effect of geranylgeranylacetone, an inducer of heat shock protein 70, against drug-induced lung injury/fibrosis in an animal model.
To determine whether oral administration of geranylgeranylacetone (GGA), a nontoxic anti-ulcer drug that is an inducer of heat shock protein (HSP) 70, protects against drug-induced lung injury/fibrosis in vivo.. We used a bleomycin (BLM)-induced lung fibrosis model in which mice were treated with oral 600 mg/kg of GGA before and after BLM administration. Inflammation and fibrosis were evaluated by histological scoring, hydroxyproline content in the lung and inflammatory cell count, and quantification by ELISA of macrophage inflammatory protein-2 (MIP-2) in bronchoalveolar lavage fluid. Apoptosis was evaluated by the TUNEL method. The induction of HSP70 in the lung was examined with western blot analysis and its localization was determined by immunohistochemistry.. We confirmed the presence of inflammation and fibrosis in the BLM-induced lung injury model and induction of HSP70 by oral administration of GGA. GGA prevented apoptosis of cellular constituents of lung tissue, such as epithelial cells, most likely related to the de novo induction of HSP70 in the lungs. GGA-treated mice also showed less fibrosis of the lungs, associated with the findings of suppression of both production of MIP-2 and inflammatory cell accumulation in the injured lung, compared with vehicle-treated mice.. GGA had a protective effect on drug-induced lung injury/fibrosis. Disease-modifying antirheumatic drugs such as methotrexate, which are indispensable for the treatment of rheumatoid arthritis, often cause interstitial lung diseases, an adverse event that currently cannot be prevented. Clinical use of GGA for drug-induced pulmonary fibrosis might be considered in the future. Topics: Administration, Oral; Animals; Anti-Ulcer Agents; Apoptosis; Bleomycin; Bronchoalveolar Lavage Fluid; Chemokine CXCL2; Disease Models, Animal; Diterpenes; Dose-Response Relationship, Drug; HSP70 Heat-Shock Proteins; Hydroxyproline; Lung; Lung Injury; Mice; Mice, Inbred C57BL; Pulmonary Fibrosis | 2009 |