geranylgeranyl-pyrophosphate and Hypertension--Pulmonary

geranylgeranyl-pyrophosphate has been researched along with Hypertension--Pulmonary* in 2 studies

Other Studies

2 other study(ies) available for geranylgeranyl-pyrophosphate and Hypertension--Pulmonary

ArticleYear
Dietary Geranylgeranyl Pyrophosphate Counteracts the Benefits of Statin Therapy in Experimental Pulmonary Hypertension.
    Circulation, 2021, 05-04, Volume: 143, Issue:18

    The mevalonate pathway generates endogenous cholesterol and intermediates including geranylgeranyl pyrophosphate (GGPP). By reducing GGPP production, statins exert pleiotropic or cholesterol-independent effects. The potential regulation of GGPP homeostasis through dietary intake and the interaction with concomitant statin therapy is unknown.. We developed a sensitive high-pressure liquid chromatography technique to quantify dietary GGPP and conducted proteomics, qualitative real-time polymerase chain reaction screening, and Western blot to determine signaling cascades, gene expression, protein-protein interaction, and protein membrane trafficking in wild-type and transgenic rats.. GGPP contents were highly variable depending on food source that differentially regulated blood GGPP levels in rats. Diets containing intermediate and high GGPP reduced or abolished the effects of statins in rats with hypoxia- and monocrotaline-induced pulmonary hypertension: this was rescuable by methyl-allylthiosulfinate and methyl-allylthiosulfinate-rich garlic extracts. In human pulmonary artery smooth muscle cells treated with statins, hypoxia activated RhoA in an extracellular GGPP-dependent manner. Hypoxia-induced ROCK2 (Rho associated coiled-coil containing protein kinase 2)/Rab10 (Ras-related protein rab-10) signaling was prevented by statin and recovered by exogenous GGPP. The hypoxia-activated RhoA/ROCK2 pathway in rat and human pulmonary artery smooth muscle cells upregulated the expression of Ca. There is important dietary regulation of GGPP levels that interferes with the effects of statin therapy in experimental pulmonary hypertension. These observations rely on a key and central role of RhoA-ROCK2 cascade activation and Rab10-faciliated CaSR membrane trafficking with subsequent overexpression and binding of HIMF to CaSR. These findings warrant clinical investigation for the treatment of pulmonary hypertension and perhaps other diseases by combining statin with garlic-derived methyl-allylthiosulfinate or garlic extracts and thus circumventing dietary GGPP variations.

    Topics: Animals; Female; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension, Pulmonary; Male; Polyisoprenyl Phosphates; Rats

2021
Inhibition of the RhoA/Rho-associated, coiled-coil-containing protein kinase-1 pathway is involved in the therapeutic effects of simvastatin on pulmonary arterial hypertension.
    Clinical and experimental hypertension (New York, N.Y. : 1993), 2018, Volume: 40, Issue:3

    Recent research has shown that statins improve pulmonary arterial hypertension (PAH), but their mechanisms of action are not fully understood. This study aimed to investigate the role of RhoA/ROCK1 regulation in the therapeutic effects of simvastatin on PAH.. For in vivo experiments, rats (N = 40) were randomly assigned to four groups: control, simvastatin, monocrotaline (MCT), and MCT + simvastatin. The MCT group and MCT + simvastatin groups received proline dithiocarbamate (50 mg/kg, i.p.) on the first day of the study. The MCT + simvastatin group received simvastatin (2 mg/kg) daily for 4 weeks, after which pulmonary arterial pressure was measured by right heart catheterization. The protein and mRNA levels of Rho and ROCK1 were measured by immunohistochemistry, Western blot, and PCR. For in vitro experiments, human pulmonary endothelial cells were divided into seven groups: control, simvastatin, monocrotaline pyrrole (MCTP), MCTP + simvastatin, MCTP + simvastatin + mevalonate, MCTP + simvastatin + farnesyl pyrophosphate (FPP), and MCTP + simvastatin + FPP + geranylgeranyl pyrophosphate (GGPP). After 72 h exposed to the drugs, the protein and mRNA levels of RhoA and ROCK1 were measured by Western blot and PCR.. The MCT group showed increased mean pulmonary arterial pressure, marked vascular remodeling, and increased protein and mRNA levels of RhoA and ROCK1 compared to the other groups (P < 0.05). In vitro, the MCTP group showed a marked proliferation of vascular endothelial cells, as well as increased protein and mRNA levels of RhoA and ROCK1 compared to the MCTP + simvastatin group. The MCTP + simvastatin + mevalonate group, MCTP + simvastatin+ FPP group, and MCTP + simvastatin + FPP + GGPP group showed increased mRNA levels of RhoA and ROCK1, as well as increased protein levels of RhoA, compared to the MCTP + simvastatin group.. Simvastatin improved vascular remodeling and inhibited the development of PAH. The effects of simvastatin were mediated by inhibition of RhoA/ROCK1. Simvastatin decreased RhoA/ROCK1 overexpression by inhibition of mevalonate, FPP, and GGPP synthesis.

    Topics: Animals; Blood Pressure; Cell Proliferation; Cells, Cultured; Endothelial Cells; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension, Pulmonary; Lung; Male; Mevalonic Acid; Monocrotaline; Polyisoprenyl Phosphates; Rats; rho-Associated Kinases; rhoA GTP-Binding Protein; RNA, Messenger; Sesquiterpenes; Signal Transduction; Simvastatin; Vascular Remodeling

2018