geranylgeranyl-pyrophosphate has been researched along with Bone-Neoplasms* in 2 studies
2 other study(ies) available for geranylgeranyl-pyrophosphate and Bone-Neoplasms
Article | Year |
---|---|
Evaluation of geranylgeranyl diphosphate synthase inhibition as a novel strategy for the treatment of osteosarcoma and Ewing sarcoma.
Rab GTPases are critical regulators of protein trafficking in the cell. To ensure proper cellular localization and function, Rab proteins must undergo a posttranslational modification, termed geranylgeranylation. In the isoprenoid biosynthesis pathway, the enzyme geranylgeranyl diphosphate synthase (GGDPS) generates the 20-carbon isoprenoid donor (geranylgeranyl pyrophosphate [GGPP]), which is utilized in the prenylation of Rab proteins. We have pursued the development of GGDPS inhibitors (GGSI) as a novel means to target Rab activity in cancer cells. Osteosarcoma (OS) and Ewing sarcoma (ES) are aggressive childhood bone cancers with stagnant survival statistics and limited treatment options. Here we show that GGSI treatment induces markers of the unfolded protein response (UPR) and triggers apoptotic cell death in a variety of OS and ES cell lines. Confirmation that these effects were secondary to cellular depletion of GGPP and disruption of Rab geranylgeranylation was confirmed via experiments using exogenous GGPP or specific geranylgeranyl transferase inhibitors. Furthermore, GGSI treatment disrupts cellular migration and invasion in vitro. Metabolomic profiles of OS and ES cell lines identify distinct changes in purine metabolism in GGSI-treated cells. Lastly, we demonstrate that GGSI treatment slows tumor growth in a mouse model of ES. Collectively, these studies support further development of GGSIs as a novel treatment for OS and ES. Topics: Animals; Bone Neoplasms; Farnesyltranstransferase; Mice; Osteosarcoma; Sarcoma, Ewing; Terpenes | 2023 |
Simvastatin exerts anticancer effects in osteosarcoma cell lines via geranylgeranylation and c-Jun activation.
Osteosarcoma is the leading primary bone cancer in young adults and exhibits high chemoresistance rates. Therefore, characterization of both alternative treatment options and the underlying mechanisms is essential. Simvastatin, a cholesterol-lowering drug, has among its pleiotropic effects anticancer potential. Characterizing this potential and the underlying mechanisms in osteosarcoma is the subject of the present study. Human osteosarcoma cells (SaOS-2 and U2OS) were treated with simvastatin (4-66 µM) for 48 or 72 h. The effects of downstream substrate mevalonate (MA) or substrates for isoprenylation farnesyl pyrophosphate (FPP) and geranylgeranyl-pyrophosphate (GGPP) were evaluated using add-back experiments. Tumour growth using MTT assay, apoptosis, cell cycle and signalling cascades involved in simvastatin-induced manipulation were analysed. The results revealed that simvastatin dose-dependently inhibited cell growth. Simvastatin significantly induced apoptosis, increased the Bax/Bcl-2 ratio, and cleavage of caspase-3 and PARP protein. Simvastatin impaired cell cycle progression as shown by significantly increased percentages of cells in the G0/G1 phase and lower percentages of cells in the S phase. Gene expression levels of cell cycle-regulating genes (TP53, CDKN1A and CDK1) were markedly altered. These effects were not completely abolished by FPP, but were reversed by MA and GGPP. JNK and c-Jun phosphorylation was enhanced after simvastatin treatment, while those were abolished when either MA or GGPP were added. In conclusion, simvastatin acts primarily by reducing prenylation to induce apoptosis and reduce osteosarcoma cell growth. Particularly enhanced activation of c-Jun seems to play a pivotal role in osteosarcoma cell death. Topics: Apoptosis; Bone Neoplasms; Cell Cycle Checkpoints; Cell Growth Processes; Cell Line, Tumor; Dose-Response Relationship, Drug; Humans; MAP Kinase Kinase 4; Mevalonic Acid; Osteosarcoma; Polyisoprenyl Phosphates; Prenylation; Proto-Oncogene Proteins c-jun; Sesquiterpenes; Simvastatin | 2018 |