genkwanin has been researched along with Neoplasms* in 2 studies
2 review(s) available for genkwanin and Neoplasms
Article | Year |
---|---|
Artemisia: a promising plant for the treatment of cancer.
Due to the promising features of the ancient herbal plant Artemisia, its biologic activity has been investigated for use in modern medicine. In this regard, Artemisia and its active phytochemicals have been introduced as having antimalarial, antioxidant, cytotoxic, antispasmodic, anthelmintic, neuroprotective, anti-inflammatory, and antimicrobial agents. In the case of cancer treatment, the plant species and its bioactive compounds target multiple pathways. Here we reviewed the scientific literature published up until 2018, which have explained the cytotoxic activity of the Artemisia species and their constituents. This review summarizes the published data found in PubMed, Science Direct and Scopus. Here, studies about the cytotoxicity and antitumor action on cancer cells and tumor bearing animals are discussed. Also, detailed molecular pathways affected by the plant and the phytochemistry of the cytotoxic active components are presented. Among all species and chemical constituents, the active ones have been selected and discussed in detail. The cytotoxic comparison made here may open a window for future works and selection of agents for cancer chemotherapy. Topics: Animals; Antineoplastic Agents, Phytogenic; Artemisia; Cell Proliferation; Humans; Molecular Structure; Neoplasms; Neoplasms, Experimental; Plant Extracts; Plants, Medicinal | 2020 |
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target. Topics: AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Humans; Lipogenesis; Neoplasms; Oxidative Stress; Pentose Phosphate Pathway; Phosphogluconate Dehydrogenase; Protein Serine-Threonine Kinases; Ribulosephosphates; Signal Transduction | 2015 |