genistin has been researched along with Adenocarcinoma* in 2 studies
2 other study(ies) available for genistin and Adenocarcinoma
Article | Year |
---|---|
Metabolic activation promotes estrogenic activity of the phytoestrogen-rich plant.
There is evidence that metabolic activation can increase the estrogenic activity of the phytoestrogen-rich herb in tests with HepG2 cells. Variation in both plant genetics and harvest season may also influence estrogenic activity of the plant materials. We evaluated the influence of in vitro metabolic activation by S9 mixture on the estrogenic activity of tuberous samples of different cultivars of the phytoestrogen-rich herb, Pueraria mirifica, harvested in different seasons.. Plant extracts were derived from the tubers of five plant cultivars collected during summer, rainy season and winter and administered to MCF-7 cultures, an ERalpha-positive human mammary adenocarcinoma cell line for 3 days at dosages of 0.1, 1, 10, 100 and 1000microg/ml. These data were compared with the major plant isoflavonoids puerarin, daidzin, genistin, daidzein and genistein and with 17beta-estradiol, at concentrations of 10(-12) to 10(-6)M. The test system was done in the absence and presence of the S9 mixture.. The major plant isoflavonoids and the plant extracts exhibited variable degrees of estrogenic activities as evaluated by altered proliferation of the MCF-7 cell line which were significantly enhanced in the presence of the S9 mixture.. Metabolic activation of plant isoflavonoids at least in vitro by S9 mixture plays a significant role in amplification of the estrogenic activity of the phytoestrogen-rich plant. In addition, the estrogenic activities of the plant samples were potentially influenced by both seasonal changes and plant genetics. Topics: Adenocarcinoma; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Estradiol; Female; Genistein; Humans; Isoflavones; Phytoestrogens; Plant Extracts; Pueraria; Seasons | 2008 |
Chemosensitivity of human prostate cancer cells PC3 and LNCaP to genistein isoflavone and beta-lapachone.
A wide spectrum of anti-cancer activity of genistein and beta-lapachone in various tumors has been reported in single treatments. In this study the combined effects of genistein and beta-lapachone on the chemosensitivity of LNCaP and PC3 human prostate cancer cells was determined in vitro, using 3-[4,5-dimethylthiazol-2-yl]-2-,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) to study treatment-induced growth inhibition and cytotoxicity and, annexin V-fluoresceine (FI) and terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-propidium iodide (PI) assays to determine potential treatment-induced apoptosis and/or necrosis. The results showed: i) that both PC3 and LNCaP are sensitive to single and combination treatments regardless of hormone sensitivity status, ii) that treatment induced dual death pathways (apoptosis and necrosis) in both cell types, iii) that growth inhibition in both cell types correlated positively with cell death via apoptosis at lower drug concentrations and necrosis at higher concentrations, iv) that combination of genistein and beta-lapachone had synergistic inhibitory effects on growth and proliferation in both cell types. The synergistic inhibitory effect was correlated positively with treatment-induced cell death via apoptosis and necrosis. The overall results indicate that combination treatments with beta-lapachone and genistein are more potent in killing both PC3 and LNCaP cancer cells than treatment with either genistein or beta-lapachone alone. beta-lapachone acts at the G1 and S phase checkpoints in the cell cycle, while genistein induces cell cycle arrest at the G2-M stage. The current results are therefore in agreement with the hypothesis that drug combinations that target cell cycles at different critical checkpoints would be more effective in causing cell death. This result provides a rationale for in vivo studies to determine whether beta-lapachone-genistein combination will provide effective chemotherapy for prostate cancer, regardless of the tumor sensitivity to hormone. Topics: Adenocarcinoma; Antibiotics, Antineoplastic; Apoptosis; Cell Division; Drug Synergism; Drug Therapy, Combination; Estrogens, Non-Steroidal; Humans; Isoflavones; Male; Naphthoquinones; Necrosis; Prostatic Neoplasms; Tumor Cells, Cultured | 2002 |