gdc-0973 and Pancreatic-Neoplasms

gdc-0973 has been researched along with Pancreatic-Neoplasms* in 5 studies

Trials

1 trial(s) available for gdc-0973 and Pancreatic-Neoplasms

ArticleYear
A Phase Ib Study to Evaluate the MEK Inhibitor Cobimetinib in Combination with the ERK1/2 Inhibitor GDC-0994 in Patients with Advanced Solid Tumors.
    The oncologist, 2020, Volume: 25, Issue:10

    Despite strong preclinical rationale, combined cobimetinib-mediated MEK inhibition and GDC-0994-mediated ERK inhibition was not tolerable on two 28-day dosing schedules in which GDC-0994 was given for 21 days continuously and cobimetinib administered over 21 days either continuously or intermittently. Adverse events were as expected for mitogen-activated protein kinase pathway inhibition, but overlapping and cumulative toxicities could not be managed on either dosing schedule. Pharmacokinetic parameters of cobimetinib and GDC-0994 given in combination were similar to those previously observed in monotherapy studies, so that there was no evidence of drug-drug interaction. Cycle 1 metabolic responses were observed by 18F-fluorodeoxyglucose-positron emission tomography but were not predictive of outcome measured by RECIST 1.1.. Simultaneous targeting of multiple nodes in the mitogen-activated protein kinase (MAPK) pathway offers the prospect of enhanced activity in RAS-RAF-mutant tumors. This phase Ib trial evaluated the combination of cobimetinib (MEK inhibitor) and GDC-0994 (ERK inhibitor) in patients with locally advanced or metastatic solid tumors.. Cobimetinib and GDC-0994 were administered orally on two separate dosing schedules. Arm A consisted of concurrent cobimetinib and GDC-0994 once daily for 21 days of a 28-day cycle; Arm B consisted of intermittent dosing of cobimetinib on a 28-day cycle concurrent with GDC-0994 daily for 21 days of a 28-day cycle.. In total, 24 patients were enrolled. For Arm A, owing to cumulative grade 1-2 toxicity, the dose of cobimetinib was decreased. For Arm B, dose increases of GDC-0994 and cobimetinib were intolerable with grade 3 dose-limiting toxicities of myocardial infarction and rash. Pharmacokinetic data did not show evidence of a drug-drug interaction. Overall, seven patients had a best overall response of stable disease (SD) and one patient with pancreatic adenocarcinoma had an unconfirmed partial response.. The safety profile of MEK and ERK inhibition demonstrated classic MAPK inhibitor-related adverse events (AEs). However, overlapping AEs and cumulative toxicity could not be adequately managed on either dosing schedule, restricting the ability to further develop this combination.

    Topics: Adenocarcinoma; Azetidines; Humans; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase Kinases; Neoplasms; Pancreatic Neoplasms; Piperidines; Protein Kinase Inhibitors

2020

Other Studies

4 other study(ies) available for gdc-0973 and Pancreatic-Neoplasms

ArticleYear
Activating Immune Recognition in Pancreatic Ductal Adenocarcinoma via Autophagy Inhibition, MEK Blockade, and CD40 Agonism.
    Gastroenterology, 2022, Volume: 162, Issue:2

    Patients with pancreatic ductal adenocarcinoma (PDA) have not yet benefitted from the revolution in cancer immunotherapy due in large part to a dominantly immunosuppressive tumor microenvironment. MEK inhibition combined with autophagy inhibition leads to transient tumor responses in some patients with PDA. We examined the functional effects of combined MEK and autophagy inhibition on the PDA immune microenvironment and the synergy of combined inhibition of MEK and autophagy with CD40 agonism (aCD40) against PDA using immunocompetent model systems.. We implanted immunologically "cold" murine PDA cells orthotopically in wide type C57BL/6J mice. We administered combinations of inhibitors of MEK1/2, inhibitors of autophagy, and aCD40 and measured anticancer efficacy and immune sequelae using mass cytometry and multiplexed immunofluorescence imaging analysis to characterize the tumor microenvironment. We also used human and mouse PDA cell lines and human macrophages in vitro to perform functional assays to elucidate the cellular effects induced by the treatments.. We find that coinhibition of MEK (using cobimetinib) and autophagy (using mefloquine), but not either treatment alone, activates the STING/type I interferon pathway in tumor cells that in turn activates paracrine tumor associated macrophages toward an immunogenic M1-like phenotype. This switch is further augmented by aCD40. Triple therapy (cobimetinib + mefloquine + aCD40) achieved cytotoxic T-cell activation in an immunologically "cold" mouse PDA model, leading to enhanced antitumor immunity.. MEK and autophagy coinhibition coupled with aCD40 invokes immune repolarization and is an attractive therapeutic approach for PDA immunotherapy development.

    Topics: Animals; Autophagy; Azetidines; Carcinoma, Pancreatic Ductal; CD40 Antigens; Cell Line, Tumor; Drug Synergism; Humans; Hydroxychloroquine; Immunotherapy; Interferon Type I; Macrophages; MAP Kinase Kinase 1; MAP Kinase Kinase 2; Mefloquine; Membrane Proteins; Mice; Pancreatic Neoplasms; Paracrine Communication; Piperidines; Protein Kinase Inhibitors; Tumor Escape; Tumor Microenvironment; Tumor-Associated Macrophages

2022
MEK inhibitors cobimetinib and trametinib, regressed a gemcitabine-resistant pancreatic-cancer patient-derived orthotopic xenograft (PDOX).
    Oncotarget, 2017, Jul-18, Volume: 8, Issue:29

    A pancreatic ductal adenocarcinoma (PDAC), obtained from a patient, was grown orthotopically in the pancreatic tail of nude mice to establish a patient-derived orthotopic (PDOX) model. Seven weeks after implantation, PDOX nude mice were divided into the following groups: untreated control (n = 7); gemcitabine (100 mg/kg, i.p., once a week for 2 weeks, n = 7); cobimetinib (5 mg/kg, p.o., 14 consecutive days, n = 7); trametinib (0.3 mg/kg, p.o., 14 consecutive days, n = 7); trabectedin (0.15 mg/kg, i.v., once a week for 2 weeks, n = 7); temozolomide (25 mg/kg, p.o., 14 consecutive days, n = 7); carfilzomib (2 mg/kg, i.v., twice a week for 2 weeks, n = 7); bortezomib (1 mg/kg, i.v., twice a week for 2 weeks, n = 7); MK-1775 (20 mg/kg, p.o., 14 consecutive days, n = 7); BEZ-235 (45 mg/kg, p.o., 14 consecutive days, n = 7); vorinostat (50 mg/kg, i.p., 14 consecutive days, n = 7). Only the MEK inhibitors, cobimetinib and trametinib, regressed tumor growth, and they were more significantly effective than other therapies (p < 0.0001, respectively), thereby demonstrating the precision of the PDOX models of PDAC and its potential for individualizing pancreatic-cancer therapy.

    Topics: Animals; Antineoplastic Agents; Azetidines; Cell Line, Tumor; Deoxycytidine; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Gemcitabine; Humans; Mice; Mitogen-Activated Protein Kinases; Pancreatic Neoplasms; Piperidines; Protein Kinase Inhibitors; Pyridones; Pyrimidinones; Xenograft Model Antitumor Assays

2017
Modeling targeted inhibition of MEK and PI3 kinase in human pancreatic cancer.
    Molecular cancer therapeutics, 2015, Volume: 14, Issue:1

    Activating mutations in the KRAS oncogene occur in approximately 90% of pancreatic cancers, resulting in aberrant activation of the MAPK and the PI3K pathways, driving malignant progression. Significant efforts to develop targeted inhibitors of nodes within these pathways are underway and several are currently in clinical trials for patients with KRAS-mutant tumors, including patients with pancreatic cancer. To model MEK and PI3K inhibition in late-stage pancreatic cancer, we conducted preclinical trials with a mutant Kras-driven genetically engineered mouse model that faithfully recapitulates human pancreatic ductal adenocarcinoma development. Treatment of advanced disease with either a MEK (GDC-0973) or PI3K inhibitor (GDC-0941) alone showed modest tumor growth inhibition and did not significantly enhance overall survival. However, combination of the two agents resulted in a significant survival advantage as compared with control tumor-bearing mice. To model the clinical scenario, we also evaluated the combination of these targeted agents with gemcitabine, the current standard-of-care chemotherapy for pancreatic cancer. The addition of MEK or PI3K inhibition to gemcitabine, or the triple combination regimen, incrementally enhanced overall survival as compared with gemcitabine alone. These results are reminiscent of the survival advantage conferred in this model and in patients by the combination of gemcitabine and erlotinib, an approved therapeutic regimen for advanced nonresectable pancreatic cancer. Taken together, these data indicate that inhibition of MEK and PI3K alone or in combination with chemotherapy do not confer a dramatic improvement as compared with currently available therapies for patients with pancreatic cancer.

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Azetidines; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Deoxycytidine; Dose-Response Relationship, Drug; Gemcitabine; Humans; Indazoles; MAP Kinase Kinase 1; Mice; Models, Biological; Mutation; Pancreatic Neoplasms; Phosphoinositide-3 Kinase Inhibitors; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins p21(ras); Standard of Care; Sulfonamides; Xenograft Model Antitumor Assays

2015
PAK1 mediates pancreatic cancer cell migration and resistance to MET inhibition.
    The Journal of pathology, 2014, Volume: 234, Issue:4

    Pancreatic adenocarcinoma (PDAC) is a major unmet medical need and a deeper understanding of molecular drivers is needed to advance therapeutic options for patients. We report here that p21-activated kinase 1 (PAK1) is a central node in PDAC cells downstream of multiple growth factor signalling pathways, including hepatocyte growth factor (HGF) and MET receptor tyrosine kinase. PAK1 inhibition blocks signalling to cytoskeletal effectors and tumour cell motility driven by HGF/MET. MET antagonists, such as onartuzumab and crizotinib, are currently in clinical development. Given that even highly effective therapies have resistance mechanisms, we show that combination with PAK1 inhibition overcomes potential resistance mechanisms mediated either by activation of parallel growth factor pathways or by direct amplification of PAK1. Inhibition of PAK1 attenuated in vivo tumour growth and metastasis in a model of pancreatic adenocarcinoma. In human tissues, PAK1 is highly expressed in a proportion of PDACs (33% IHC score 2 or 3; n = 304) and its expression is significantly associated with MET positivity (p < 0.0001) and linked to a widespread metastatic pattern in patients (p = 0.067). Taken together, our results provide evidence for a functional role of MET/PAK1 signalling in pancreatic adenocarcinoma and support further characterization of therapeutic inhibitors in this indication.

    Topics: Adenocarcinoma; Animals; Antibodies, Monoclonal; Antineoplastic Combined Chemotherapy Protocols; Azetidines; Cell Movement; Disease Models, Animal; Drug Resistance, Neoplasm; Humans; Immunohistochemistry; Mice; p21-Activated Kinases; Pancreatic Neoplasms; Piperidines; Proto-Oncogene Proteins c-met; Signal Transduction

2014