gdc-0449 has been researched along with Scleroderma--Systemic* in 2 studies
2 other study(ies) available for gdc-0449 and Scleroderma--Systemic
Article | Year |
---|---|
CD47 prevents the elimination of diseased fibroblasts in scleroderma.
Scleroderma is a devastating fibrotic autoimmune disease. Current treatments are partly effective in preventing disease progression but do not remove fibrotic tissue. Here, we evaluated whether scleroderma fibroblasts take advantage of the "don't-eat-me-signal" CD47 and whether blocking CD47 enables the body's immune system to get rid of diseased fibroblasts. To test this approach, we used a Jun-inducible scleroderma model. We first demonstrated in patient samples that scleroderma upregulated transcription factor JUN and increased promoter accessibilities of both JUN and CD47. Next, we established our scleroderma model, demonstrating that Jun mediated skin fibrosis through the hedgehog-dependent expansion of CD26+Sca1- fibroblasts in mice. In a niche-independent adaptive transfer model, JUN steered graft survival and conferred increased self-renewal to fibroblasts. In vivo, JUN enhanced the expression of CD47, and inhibiting CD47 eliminated an ectopic fibroblast graft and increased in vitro phagocytosis. In the syngeneic mouse, depleting macrophages ameliorated skin fibrosis. Therapeutically, combined CD47 and IL-6 blockade reversed skin fibrosis in mice and led to the rapid elimination of ectopically transplanted scleroderma cells. Altogether, our study demonstrates the efficiency of combining different immunotherapies in treating scleroderma and provides a rationale for combining CD47 and IL-6 inhibition in clinical trials. Topics: Anilides; Animals; CD47 Antigen; Cell Self Renewal; Cells, Cultured; Dipeptidyl Peptidase 4; Disease Models, Animal; Female; Fibroblasts; Humans; Immune Checkpoint Inhibitors; Immunotherapy; Interleukin-6; Lung; Male; Mice, Inbred Strains; Proto-Oncogene Proteins c-jun; Pyridines; Scleroderma, Systemic | 2020 |
The transcription factor GLI2 as a downstream mediator of transforming growth factor-β-induced fibroblast activation in SSc.
Hedgehog signalling plays a critical role during the pathogenesis of fibrosis in systemic sclerosis (SSc). Besides canonical hedgehog signalling with smoothened (SMO)-dependent activation of GLI transcription factors, GLI can be activated independently of classical hedgehog ligands and receptors (so-called non-canonical pathways). Here, we aimed to evaluate the role of non-canonical hedgehog signalling in SSc and to test the efficacy of direct GLI inhibitors that target simultaneously canonical and non-canonical hedgehog pathways.. The GLI inhibitor GANT-61 was used to inhibit canonical as well as non-canonical hedgehog signalling, while the SMO inhibitor vismodegib was used to selectively target canonical hedgehog signalling. Furthermore, GLI2 was selectively depleted in fibroblasts using the Cre-LoxP system. The effects of pharmacological or genetic of GLI2 on transforming growth factor-β (TGF-β) signalling were analysed in cultured fibroblasts, in bleomycin-induced pulmonary fibrosis and in mice with overexpression of a constitutively active TGF-β receptor I.. TGF-β upregulated GLI2 in a Smad3-dependent manner and induced nuclear accumulation and DNA binding of GLI2. Fibroblast-specific knockout of GLI2 protected mice from TBR. Our data demonstrate that hedgehog pathways and TGF-β signalling both converge to GLI2 and that GLI2 integrates those signalling to promote tissue fibrosis. These findings may have translational implications as non-selective inhibitors of GLI2 are in clinical use and selective molecules are currently in development. Topics: Adult; Aged; Anilides; Animals; Cells, Cultured; Collagen Type I; Connective Tissue Growth Factor; Female; Fibroblasts; Fibrosis; Gene Knockout Techniques; Hedgehog Proteins; Humans; Kruppel-Like Transcription Factors; Male; Mice; Mice, Knockout; Mice, Transgenic; Middle Aged; Plasminogen Activator Inhibitor 1; Protein Serine-Threonine Kinases; Pteridines; Pulmonary Fibrosis; Pyridines; Pyrimidines; Receptor, Transforming Growth Factor-beta Type I; Receptors, Transforming Growth Factor beta; Recombinant Proteins; RNA, Messenger; Scleroderma, Systemic; Signal Transduction; Skin; Smad3 Protein; Smoothened Receptor; Transforming Growth Factor beta; Young Adult; Zinc Finger Protein Gli2 | 2017 |