gdc-0449 has been researched along with Cleft-Palate* in 2 studies
2 other study(ies) available for gdc-0449 and Cleft-Palate
Article | Year |
---|---|
Disruption of Hedgehog Signaling by Vismodegib Leads to Cleft Palate and Delayed Osteogenesis in Experimental Design.
The function of hedgehog signaling has previously been shown to be crucial for craniofacial development. In this study, we treated C57/BL6J mice with the hedgehog pathway inhibitor vismodegib by oral gavage to establish a stable vismodegib-induced cleft palate model. At E10.5 and E12.5, mice in the experimental group were treated with 100 mg/kg of vismodegib, whereas mice in the control group were treated with solvent. The treated pregnant mice were sacrificed on E13.5, E14.5, E15.5, and E16.5. Palatal shelf growth was evaluated via histological and immunohistochemical analyses as well as palatal organ culture. Immunohistochemical staining was performed to examine the expression of osteogenic proteins in the palatal tissue. A high proportion of the mice administered 2 doses of 100 mg/kg of vismodegib displayed a cleft palate. Histologic examination revealed severely retarded palatal shelf growth and thickened epithelium in the experimental group. Vismodegib exposure induced complete cleft palate, which was attributed to a reduced cell proliferation rate in the palatal mesenchyme along the anterior-posterior axis. Moreover, this model also showed delayed ossification in the region of palatine bone with downregulation of Indian hedgehog (Ihh) protein. Our results suggest that vismodegib can be used to inhibit hedgehog signaling to affect palatal morphogenesis. Under treatment with this exogenous inhibitor, the cell proliferation rate of the palatal shelves and the osteogenic potential of the hard palate were decreased, which likely contributed to the complete cleft palate. Topics: Anilides; Animals; Cleft Palate; Female; Hedgehog Proteins; Mice; Mice, Inbred C57BL; Osteogenesis; Pregnancy; Pyridines; Research Design; Signal Transduction | 2017 |
Definition of critical periods for Hedgehog pathway antagonist-induced holoprosencephaly, cleft lip, and cleft palate.
The Hedgehog (Hh) signaling pathway mediates multiple spatiotemporally-specific aspects of brain and face development. Genetic and chemical disruptions of the pathway are known to result in an array of structural malformations, including holoprosencephaly (HPE), clefts of the lip with or without cleft palate (CL/P), and clefts of the secondary palate only (CPO). Here, we examined patterns of dysmorphology caused by acute, stage-specific Hh signaling inhibition. Timed-pregnant wildtype C57BL/6J mice were administered a single dose of the potent pathway antagonist vismodegib at discrete time points between gestational day (GD) 7.0 and 10.0, an interval approximately corresponding to the 15th to 24th days of human gestation. The resultant pattern of facial and brain dysmorphology was dependent upon stage of exposure. Insult between GD7.0 and GD8.25 resulted in HPE, with peak incidence following exposure at GD7.5. Unilateral clefts of the lip extending into the primary palate were also observed, with peak incidence following exposure at GD8.875. Insult between GD9.0 and GD10.0 resulted in CPO and forelimb abnormalities. We have previously demonstrated that Hh antagonist-induced cleft lip results from deficiency of the medial nasal process and show here that CPO is associated with reduced growth of the maxillary-derived palatal shelves. By defining the critical periods for the induction of HPE, CL/P, and CPO with fine temporal resolution, these results provide a mechanism by which Hh pathway disruption can result in "non-syndromic" orofacial clefting, or HPE with or without co-occurring clefts. This study also establishes a novel and tractable mouse model of human craniofacial malformations using a single dose of a commercially available and pathway-specific drug. Topics: Anilides; Animals; Cleft Lip; Cleft Palate; Face; Female; Hedgehog Proteins; Holoprosencephaly; Mice, Inbred C57BL; Morphogenesis; Phenotype; Pregnancy; Pyridines; Signal Transduction | 2015 |