gdc-0449 has been researched along with Carcinoma--Pancreatic-Ductal* in 5 studies
1 review(s) available for gdc-0449 and Carcinoma--Pancreatic-Ductal
Article | Year |
---|---|
Do anti-stroma therapies improve extrinsic resistance to increase the efficacy of gemcitabine in pancreatic cancer?
Pancreatic ductal adenocarcinoma (PDAC) is among the most devastating human malignancies, with approximately 20-30% of PDAC patients receiving the surgical resection with curative intent. Although many studies have focused on finding ideal "drug chaperones" that facilitate and/or potentiate the effects of gemcitabine (GEM) in pancreatic cancer, a significant benefit in overall survival could not be demonstrated for any of these combination therapies in PDAC. Given that pancreatic cancer is characterized by desmoplasia and the dual biological roles of stroma in pancreatic cancer, we reassess the importance of stroma in GEM-based therapeutic approaches in light of current findings. This review is focused on understanding the role of stromal components in the extrinsic resistance to GEM and whether anti-stroma therapies have a positive effect on the GEM delivery. This work contributes to the development of novel and promising combination GEM-based regimens that have achieved significant survival benefits for the patients with pancreatic cancer. Topics: Albumins; Anilides; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Pancreatic Ductal; Deoxycytidine; Drug Resistance, Neoplasm; Drug Synergism; Gemcitabine; Gene Expression Regulation, Neoplastic; Humans; Hyaluronic Acid; Osteonectin; Paclitaxel; Pancreatectomy; Pancreatic Neoplasms; Pyridines; Stromal Cells; Survival Analysis; Treatment Outcome | 2018 |
1 trial(s) available for gdc-0449 and Carcinoma--Pancreatic-Ductal
Article | Year |
---|---|
Phase 2 study of vismodegib, a hedgehog inhibitor, combined with gemcitabine and nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma.
The Hedgehog (Hh) signalling pathway is overexpressed in pancreatic ductal adenocarcinoma (PDA). Preclinical studies have shown that Hh inhibitors reduce pancreatic cancer stem cells (pCSC), stroma and Hh signalling.. Patients with previously untreated metastatic PDA were treated with gemcitabine and nab-paclitaxel. Vismodegib was added starting on the second cycle. The primary endpoint was progression-free survival (PFS) as compared with historical controls. Tumour biopsies to assess pCSC, stroma and Hh signalling were obtained before treatment and after cycle 1 (gemcitabine and nab-paclitaxel) or after cycle 2 (gemcitabine and nab-paclitaxel plus vismodegib).. Seventy-one patients were enrolled. Median PFS and overall survival (OS) were 5.42 months (95% confidence interval [CI]: 4.37-6.97) and 9.79 months (95% CI: 7.85-10.97), respectively. Of the 67 patients evaluable for response, 27 (40%) had a response: 26 (38.8%) partial responses and 1 complete response. In the tumour samples, there were no significant changes in ALDH + pCSC following treatment.. Adding vismodegib to chemotherapy did not improve efficacy as compared with historical rates observed with chemotherapy alone in patients with newly diagnosed metastatic pancreatic cancer. This study does not support the further evaluation of Hh inhibitors in this patient population.. ClinicalTrials.gov Identifier: NCT01088815. Topics: Aged; Albumins; Anilides; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Pancreatic Ductal; Deoxycytidine; Female; Gemcitabine; Humans; Male; Middle Aged; Paclitaxel; Pancreatic Neoplasms; Progression-Free Survival; Pyridines; Treatment Outcome | 2020 |
3 other study(ies) available for gdc-0449 and Carcinoma--Pancreatic-Ductal
Article | Year |
---|---|
Marker-free lineage tracing reveals an environment-instructed clonogenic hierarchy in pancreatic cancer.
Effective treatments for pancreatic ductal adenocarcinoma (PDAC) are lacking, and targeted agents have demonstrated limited efficacy. It has been speculated that a rare population of cancer stem cells (CSCs) drives growth, therapy resistance, and rapid metastatic progression in PDAC. These CSCs demonstrate high clonogenicity in vitro and tumorigenic potential in vivo. However, their relevance in established PDAC tissue has not been determined. Here, we use marker-independent stochastic clonal labeling, combined with quantitative modeling of tumor expansion, to uncover PDAC tissue growth dynamics. We find that in contrast to the CSC model, all PDAC cells display clonogenic potential in situ. Furthermore, the proximity to activated cancer-associated fibroblasts determines tumor cell clonogenicity. This means that the microenvironment is dominant in defining the clonogenic activity of PDAC cells. Indeed, manipulating the stroma by Hedgehog pathway inhibition alters the tumor growth mode, revealing that tumor-stroma crosstalk shapes tumor growth dynamics and clonal architecture. Topics: Anilides; Animals; Antineoplastic Agents; Cancer-Associated Fibroblasts; Carcinoma, Pancreatic Ductal; Cell Communication; Cell Line, Tumor; Cell Lineage; Cell Proliferation; Female; Hedgehog Proteins; Humans; Male; Mice, Inbred NOD; Mice, Nude; Mice, SCID; Neoplastic Stem Cells; Pancreatic Neoplasms; Pyridines; Signal Transduction; Stromal Cells; Time Factors; Tumor Burden; Tumor Microenvironment; Xenograft Model Antitumor Assays | 2021 |
Targeting of the Hedgehog/GLI and mTOR pathways in advanced pancreatic cancer, a phase 1 trial of Vismodegib and Sirolimus combination.
Preclinical data indicated a functional and molecular interaction between Hedgehog (HH)/GLI and PI3K-AKT-mTOR pathways promoting pancreatic ductal adenocarcinoma (PDAC). A phase I study was conducted of Vismodegib and Sirolimus combination to evaluate maximum tolerated dose (MTD) and preliminary anti-tumor efficacy.. Cohort I included advanced solid tumors patients following a traditional 3 + 3 design. Vismodegib was orally administered at 150 mg daily with Sirolimus starting at 3 mg daily, increasing to 6 mg daily at dose level 2. Cohort II included only metastatic PDAC patients. Anti-tumor efficacy was evaluated every two cycles and target assessment at pre-treatment and after a single cycle.. Nine patient were enrolled in cohort I and 22 patients in cohort II. Twenty-eight patients were evaluated for dose-limiting toxicities (DLTs). One DLT was observed in each cohort, consisting of grade 2 mucositis and grade 3 thrombocytopenia. The MTD for Vismodegib and Sirolimus were 150 mg daily and 6 mg daily, respectively. The most common grade 3-4 toxicities were fatigue, thrombocytopenia, dehydration, and infections. A total of 6 patients had stable disease. No partial or complete responses were observed. Paired biopsy analysis before and after the first cycle in cohort II consistently demonstrated reduced GLI1 expression. Conversely, GLI and mTOR downstream targets were not significantly affected.. The combination of Vismodegib and Sirolimus was well tolerated. Clinical benefit was limited to stable disease in a subgroup of patients. Targeting efficacy demonstrated consistent partial decreases in HH/GLI signaling with limited impact on mTOR signaling. These findings conflict with pre-clinical models and warrant further investigations. Topics: Adult; Aged; Anilides; Antineoplastic Combined Chemotherapy Protocols; Biopsy; Carcinoma, Pancreatic Ductal; Drug Therapy, Combination; Female; Hedgehog Proteins; Humans; Immunosuppressive Agents; Male; Maximum Tolerated Dose; Middle Aged; Negative Results; Neoplasm Metastasis; Pancreatic Neoplasms; Pyridines; RNA, Neoplasm; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Treatment Outcome | 2020 |
Micelle Mixtures for Coadministration of Gemcitabine and GDC-0449 To Treat Pancreatic Cancer.
Hedgehog (Hh) signaling plays an important role in the development and metastasis of pancreatic ductal adenocarcinoma (PDAC). Although gemcitabine (GEM) has been used as a first-line therapy for PDAC, its rapid metabolism and short plasma half-life restrict its use as a single chemotherapy. Combination therapy with more than one drug is a promising approach for treating cancer. Herein, we report the use of methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate)-graft-dodecanol (mPEG-b-PCC-g-DC) copolymer for conjugating GEM and encapsulating a Hh inhibitor, vismodegib (GDC-0449), into its hydrophobic core for treating PDAC. Our objective was to determine whether the micelle mixtures of these two drugs could show better response in inhibiting Hh signaling pathway and restraining the proliferation and metastasis of pancreatic cancer. The in vivo stability of GEM significantly increased after conjugation, which resulted in its increased antitumor efficacy. Almost 80% of encapsulated GDC-0449 and 19% conjugated GEM were released in vitro at pH 5.5 in 48 h in a sustained manner. The invasion, migration, and colony forming features of MIA PaCa-2 cells were significantly inhibited by micelle mixture carrying GEM and GDC-0449. Remarkable increase in PARP cleavage and Bax proved increased apoptosis by this combination formulation compared to individual micelles. This combination therapy efficiently inhibited tumor growth, increased apoptosis, reduced Hh ligands PTCH-1 and Gli-1, and lowered EMT-activator ZEB-1 when injected to athymic nude mice bearing subcutaneous tumor generated using MIA PaCa-2 cells compared to monotherapy as observed from immunohistochemical analysis. In conclusion, micelle mixtures carrying GEM and GDC-0449 have the potential to treat pancreatic cancer. Topics: Adenocarcinoma; Anilides; Animals; Antimetabolites, Antineoplastic; Apoptosis; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Cell Movement; Cell Proliferation; Deoxycytidine; Dodecanol; Gemcitabine; Humans; Male; Mice; Mice, Nude; Micelles; Pancreatic Neoplasms; Polyethylene Glycols; Polymers; Propane; Pyridines; Signal Transduction | 2016 |