gastrin-releasing-peptide and Pheochromocytoma

gastrin-releasing-peptide has been researched along with Pheochromocytoma* in 2 studies

Other Studies

2 other study(ies) available for gastrin-releasing-peptide and Pheochromocytoma

ArticleYear
Production of immunoreactive corticotropin-releasing hormone in various neuroendocrine tumors.
    Japanese journal of clinical oncology, 1992, Volume: 22, Issue:4

    The concentrations of immunoreactive (IR) corticotropin-releasing hormone (CRH) in 218 neuroendocrine tumors were determined by CRH radioimmunoassay. The tumors examined were 86 pancreatic endocrine tumors (PET), 22 neuroblastic tumors (NBT), 26 carcinoid tumors (CA), 24 pheochromocytomas (PHEO), 40 small cell lung carcinomas (SCLC) and 20 medullary thyroid carcinomas (MTC). IR-CRH was detectable in 21 neuroendocrine tumors (10 PET, four NBT, three CA, two PHEO and two SCLC) at levels of 10-2,700 ng/g wet weight (9.6%). The 21 patients with these CRH-producing tumors showed no clinical symptoms suggestive of Cushing's syndrome. The levels of plasma IR-CRH extracted by immunoaffinity chromatography were < 7.5 pg/ml in five normal subjects and a patient with a neuroblastic tumor containing 55 ng/g wet weight IR-CRH, but in a patient with a thymic carcinoid tumor containing 1,000 ng/g wet weight IR-CRH, the plasma level was elevated to 180 pg/ml. This patient did not have Cushing's syndrome nor an elevated plasma adrenocorticotropic hormone (ACTH) level. The concentrations of nine peptides (growth hormone-releasing hormone, somatostatin, ACTH, calcitonin, gastrin-releasing peptide, glucagon, vasoactive intestinal peptide, neuropeptide tyrosine and pancreatic polypeptide) were determined in extracts of the 21 IR-CRH-producing tumors. Some of these peptides were frequently found to be produced concomitantly with CRH. The results indicate IR-CRH to be produced by various neuroendocrine tumors, but Cushing's syndrome, due to the CRH, to be very rare. The results also show that CRH-producing tumors produce multiple hormones.

    Topics: Adenoma, Islet Cell; Adrenal Gland Neoplasms; Adrenocorticotropic Hormone; Bombesin; Calcitonin; Carcinoid Tumor; Carcinoma, Small Cell; Chromatography, Gel; Corticotropin-Releasing Hormone; Gastrin-Releasing Peptide; Gastrins; Humans; Hypothalamus; Lung Neoplasms; Neoplasms; Neuroblastoma; Pancreatic Neoplasms; Peptides; Pheochromocytoma; Somatostatin; Thyroid Neoplasms; Vasoactive Intestinal Peptide

1992
Gastrin releasing peptide in human neuroendocrine tumours.
    The Journal of pathology, 1985, Volume: 147, Issue:4

    Neuroendocrine tumours of the lung and gut are known to possess bombesin-like immunoreactivity. The recent observation that gastrin releasing peptide (GRP), a 27 amino acid peptide isolated from the porcine intestine, may be the mammalian analogue of bombesin led us to look for this peptide in a variety of human neoplasms. Formalin-fixed tissues from 85 tumours were examined by the immunoperoxidase technique, using specific antisera to the GRP molecule (1-27) and the GRP fragment (1-16). Intense cytoplasmic GRP immunoreactivity was seen in thyroid medullary carcinomas (3/3), carcinoids of lung, pancreas, and intestine (22/36), and paragangliomas (2/3). Less frequent staining was present in pulmonary small cell (oat cell) carcinomas (1/8) and pituitary adenomas (1/6). Complete absence of immunoreactivity was observed in three phaeochromocytomas, five Merkel cell tumours, six neuroblastomas and 15 non-neuroendocrine tumours. Normal neuroendocrine cells of the thyroid (C-cells) and bronchial mucosa (Kulchitsky cells) exhibited GRP immunoreactivity; nerve fibres from all sites failed to demonstrate staining for GRP. In each positive case, the pattern of staining for GRP (1-27) and GRP (1-16) was identical, although the GRP (1-16) immunostaining was weaker. These findings indicate that bombesin immunoreactivity in human neuroendocrine cells and tumours is attributable to GRP-like molecules and that GRP is a useful marker of neuroendocrine differentiation in many tumours.

    Topics: Adenoma; Adrenal Gland Neoplasms; Amino Acid Sequence; Bombesin; Carcinoid Tumor; Carcinoma, Small Cell; Gastrin-Releasing Peptide; Gastrins; Humans; Intestinal Neoplasms; Lung Neoplasms; Neoplasms; Neurosecretory Systems; Pancreatic Neoplasms; Peptides; Pheochromocytoma; Pituitary Neoplasms; Thyroid Neoplasms

1985