gardiquimod has been researched along with HIV-Infections* in 1 studies
1 other study(ies) available for gardiquimod and HIV-Infections
Article | Year |
---|---|
Gardiquimod: a Toll-like receptor-7 agonist that inhibits HIV type 1 infection of human macrophages and activated T cells.
Immune response modifiers are being studied as therapeutic agents for viral infections and cancer. These molecules include agonists for the Toll-like receptors (TLR), a family of innate immune receptors. TLR7 and 8, located in cellular endosomes, bind single-stranded RNA characteristic of viral genomes, and trigger intracellular signaling pathways that induce inflammatory cytokines and antiviral innate immune factors. We studied the anti-HIV-1 effects of gardiquimod, a specific TLR7 agonist when used at concentrations below 10 μM, in macrophages and activated peripheral blood mononuclear cells (PBMCs). Gardiquimod, added prior to or within 2 days after infection with X4, R5, or dual-tropic (R5/X4) strains of HIV-1, significantly reduced infection in these cells. Cocultures of activated PBMCs added to gardiquimod-treated and HIV-1-exposed macrophages demonstrated minimal HIV-1 replication for up to 10 days, suggesting that gardiquimod inhibited activated PBMCs viral amplification from HIV-1-exposed macrophages. Gardiquimod treatment of both activated PBMCs and macrophages induced interferon-alpha (IFN-α) transcription within hours of addition, and sustained IFN-α protein secretion for several days. Treatment of cells with a peptide inhibitor to the MyD88 adaptor protein blocked the induction of IFN-α by gardiquimod, and partially reversed the anti-HIV effects in activated PBMCs. Blocking the IFN-α receptor with a neutralizing antibody also reduced the anti-HIV effect of gardiquimod. Gardiquimod inhibited HIV-1 reverse transcriptase, an early step in the life cycle of HIV-1. These findings suggest that gardiquimod, functioning as both an immune system modifier and a reverse transcriptase inhibitor, could be developed as a novel therapeutic agent to block systemic and mucosal transmission of HIV-1. Topics: Aminoquinolines; Anti-HIV Agents; Cell Line; DNA, Viral; HIV Infections; HIV-1; Humans; Imidazoles; Interferon-alpha; Leukocytes, Mononuclear; Macrophages; Real-Time Polymerase Chain Reaction; T-Lymphocytes; Toll-Like Receptor 7; Virus Replication | 2013 |