gardenia-yellow and Disease-Models--Animal

gardenia-yellow has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for gardenia-yellow and Disease-Models--Animal

ArticleYear
Effects of Gardenia jasminoides extracts on cognition and innate immune response in an adult Drosophila model of Alzheimer's disease.
    Chinese journal of natural medicines, 2017, Volume: 15, Issue:12

    Herbal extracts have been extensively used worldwide for their application on memory improvement, especially among aged and memory-deficit populations. In the present study, the memory loss induced by human Abeta protein over-expression in fruitfly Alzheimer's disease (AD) model was rescued by multiple extracts from Gardenia jasminoides. Three extracts that rich with gardenia yellow, geniposide, and gardenoside components showed distinct rescue effect on memory loss. Further investigation on adding gardenoside into a formula of Ganoderma lucidum, Panax notoginseng and Panax ginseng (GPP) also support its therapeutic effects on memory improvement. Interestingly, the application of GPP and gardenoside did not alter the accumulation of Abeta proteins but suppressed the expression of immune-related genes in the brain. These results revealed the importance and relevancy of anti-inflammation process and the underlying mechanisms on rescuing memory deficits, suggesting the potential therapeutic use of the improved GPP formulation in improving cognition in defined population in the future.

    Topics: Alzheimer Disease; Animals; Antimicrobial Cationic Peptides; Brain; Cognition; Disease Models, Animal; Drosophila; Drosophila Proteins; Gardenia; Gene Expression Regulation; Immunity, Innate; Iridoids; Plant Extracts; Polymerase Chain Reaction

2017
Instant and Persistent Antidepressant Response of Gardenia Yellow Pigment Is Associated with Acute Protein Synthesis and Delayed Upregulation of BDNF Expression in the Hippocampus.
    ACS chemical neuroscience, 2016, 08-17, Volume: 7, Issue:8

    Gardenia yellow pigment (GYP) is a collection of compounds with shared structure of crocin, which confers antidepressant activity. GYP is remarkably enriched in Gardenia jasminoides Ellis, implicated in rapid antidepressant effects that are exerted through enhanced neuroplasticity. This study aims to investigate the rapid antidepressant-like activity of GYP and its underlying mechanism. After the optimal dose was determined, antidepressant responses in tail suspension test or forced swim test were monitored at 30 min, 1 day, 3 days, and 7 days post a single GYP administration. Rapid antidepressant potential was tested using learned helplessness paradigm. The expression of proteins involved in hippocampal neuroplasticity was determined. The effect of blockade of protein synthesis on GYP's antidepressant response was examined. Antidepressant response was detected at 30 min, and lasted for at least 3 days post a single administration of GYP. A single administration of GYP also reversed the deficits in learned helplessness test. Thirty minutes post GYP administration, ERK signaling was activated, and its downstream effector phosphorylated eukaryotic elongation factor 2 was inhibited, contributing to increased protein translation. Expression of synaptic proteins GluR1 and synapsin 1 was upregulated. Blockade of protein synthesis with anisomycin blunted the immediate antidepressant response of GYP. CREB signaling and BDNF expression were upregulated at 24 h, but not at 30 min. In conclusion, GYP-induced immediate antidepressant response was dependent on synthesis of proteins, including synaptic proteins. This was followed by enhanced expression of CREB and BDNF, which likely mediated the persistent antidepressant responses.

    Topics: Analysis of Variance; Animals; Brain-Derived Neurotrophic Factor; CREB-Binding Protein; Depression; Disease Models, Animal; Exploratory Behavior; Gardenia; Gene Expression Regulation; Helplessness, Learned; Hindlimb Suspension; Hippocampus; Mice; Pigments, Biological; Plant Extracts; Signal Transduction; Swimming

2016