gant-61 has been researched along with Thyroid-Neoplasms* in 2 studies
2 other study(ies) available for gant-61 and Thyroid-Neoplasms
Article | Year |
---|---|
GANT61 suppresses cell survival, invasion and epithelial-mesenchymal transition through inactivating AKT/mTOR and JAK/STAT3 pathways in anaplastic thyroid carcinoma.
Glioma-associated oncogene (Gli) antagonist-61 (GANT61) not only suppresses the malignant behavior of several cancers but also presents synergistic effects with other anticancer agents on suppressing the progression of cancers, while relevant information is rare in anaplastic thyroid carcinoma (ATC). This study aimed to explore the therapeutic effect of GANT61 in ATC and its molecular mechanism. ATC cells (8505C and CAL-62) were treated with GANT61, followed by detection of cell proliferation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) markers. Subsequently, RNA sequencing was performed to explore the potential downstream pathway. Following that, rescue experiments were conducted by SC79 (AKT activator) or colivelin (STAT3 activator) monotreatment or combined with GANT61 in ATC cells. GANT61 reduced Gli1 expression, suppressed proliferation at several time settings, promoted apoptosis, inhibited invasion and increased E-cadherin while decreased Vimentin and Snail expressions (EMT markers) in ATC cells. The subsequent RNA sequence identified 85 upregulated differentially expressed genes (DEGs) and 71 downregulated DEGs in GANT61-treated ATC cells, which were mainly enriched in PI3K/AKT, JAK/STAT, Hedgehog and mTOR pathways. Next, the inactivation of AKT/mTOR and JAK/STAT3 pathways by GANT61 treatment was verified by western blot. The following rescue experiments showed that SC79 or colivelin treatment promoted the malignant behaviors of ATC cells. More importantly, SC79 or colivelin treatment compensated the effect of GANT61 treatment on cell proliferation at several time settings and apoptosis, invasion, and part of that on EMT in ATC cells. GANT61 suppresses cell survival, invasion and EMT through inactivating AKT/mTOR or JAK/STAT3 pathways in ATC. Topics: Cell Line, Tumor; Cell Movement; Cell Survival; Epithelial-Mesenchymal Transition; Humans; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Pyridines; Pyrimidines; STAT3 Transcription Factor; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; TOR Serine-Threonine Kinases | 2022 |
The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met.
The sonic hedgehog (Shh) pathway is highly activated in thyroid neoplasms and promotes thyroid cancer stem-like cell phenotype, but whether the Shh pathway regulates thyroid tumor cell motility and invasiveness remains unknown. Here, we report that the motility and invasiveness of two anaplastic thyroid tumor cell lines, KAT-18 and SW1736, were inhibited by two inhibitors of the Shh pathway (cyclopamine and GANT61). Consistently, the cell motility and invasiveness was decreased by Shh and Gli1 knockdown, and was increased by Gli1 overexpression in KAT-18 cells. Mechanistic studies revealed that Akt and c-Met phosphorylation was decreased by a Gli1 inhibitor and by Shh and Gli1 knockdown, but was increased by Gli1 overexpression. LY294002, a PI-3 kinase inhibitor, and a c-Met inhibitor inhibited the motility and invasiveness of Gli1-transfected KAT-18 cells more effectively than the vector-transfected cells. Knockdown of Snail, a transcription factor regulated by the Shh pathway, led to decreased cell motility and invasiveness in KAT-18 and SW1736 cells. However, key epithelial-to-mesenchymal transition (EMT) markers including E-cadherin and vimentin as well as Slug were not affected by cyclopamine and GANT61 in either SW1736 or WRO82, a well differentiated follicular thyroid carcinoma cell line. Our data suggest that the Shh pathway-stimulated thyroid tumor cell motility and invasiveness is largely mediated by AKT and c-Met activation with little involvement of EMT. Topics: Cadherins; Cell Line, Tumor; Cell Movement; Chromones; Enzyme Activation; Epithelial-Mesenchymal Transition; Hedgehog Proteins; Humans; Morpholines; Neoplasm Invasiveness; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-met; Pyridines; Pyrimidines; Signal Transduction; Snail Family Transcription Factors; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Veratrum Alkaloids; Vimentin; Zinc Finger Protein GLI1 | 2016 |