ganglioside--gd2 has been researched along with Astrocytoma* in 2 studies
2 other study(ies) available for ganglioside--gd2 and Astrocytoma
Article | Year |
---|---|
Incorporation, remodeling and re-expression of exogenous gangliosides in human cancer cell lines in vitro and in vivo.
Human neuroblastomas and gliomas express high levels of GD2 ganglioside. Mechanisms for the re-expression of GD2 after the incorporation of an exogenous precursor structure were analyzed using a human heterophilic monoclonal antibody (mAb) together with mouse anti-GD3 and mouse anti-GD2 mAbs. First, mouse anti-GD2 mAb 220-51 was generated and its reactivity was confirmed to be almost identical with that of the well-known mAb 3F8 antibody. As reported previously for GD3 variants, new ganglioside antigens reactive with human mAb 32-27 were analyzed by culturing an astrocytoma cell line AS in the presence of NeuGc-GM3. Analysis of the extracted gangliosides from AS thus cultured revealed a new component detected with mAb 32-27, migrating similarly to GD2. Incorporated NeuGc-GM3 seemed to be converted to NeuAc-NeuGc-type GD3, and then to NeuAc-NeuGc-type GD2 with alpha2,8-sialyltransferase and beta1,4-GalNAc transferase, respectively. In addition, AS was inoculated into nude mice, and glycolipids were extracted from generated tumors. Analysis of the ganglioside components using mAbs indicated that NeuAc-NeuGc-type GD2 was generated in the xenogeneic tumors by incorporating NeuGc-GM3 from mouse blood. These results indicated the presence of a pathway for utilization of exogenous gangliosides for remodeling and re-expression in vivo. Topics: Animals; Antibodies, Monoclonal; Astrocytoma; Cell Line, Tumor; Cell Separation; Chromatography, Thin Layer; Flow Cytometry; Gangliosides; Glycosyltransferases; Humans; In Vitro Techniques; Mice; Mice, Inbred C3H; Mice, Nude; Models, Biological; N-Acetylneuraminic Acid; Neoplasm Transplantation; Signal Transduction | 2004 |
Gangliosides as diagnostic markers of human astrocytomas and primitive neuroectodermal tumors.
Limitations of classification schemes for brain tumors based solely on morphology have stimulated searches for molecular markers of nosologic and prognostic value. Gangliosides are logical candidates because there are high concentrations of them in the nervous system, there is evidence of their roles in regulation of growth and differentiation, and data from small series suggest correlations between ganglioside composition and glioma type.. Ganglioside compositions were determined for 70 primary human brain tumors: 16 low grade astrocytomas (LG), 12 anaplastic astrocytomas (AA), 34 glioblastoma multiformes (GBM), and 8 primitive neuroectodermal tumors (PNET). This method involved identification and quantitation of specific gangliosides using chemical analysis and immunoanalysis.. Among all tumor types, histologic grade correlated with a progressive loss of 1b gangliosides (P < 0.0001). GQ1b was higher in LGs than in AAs (P < 0.001). Both GT1b and GD1b were higher in AAs than GBMs (P < 0.01 and 0.05, respectively) and lower in PNETs than in GBMs (P < 0.05). GM3 was higher in PNETs than in any astrocytoma group and higher in GBMs than in either AAs or LGs. There was a significant difference in the content of 3'-LM1 among all groups (P < 0.005), between AAs and GBMs (P < 0.05), and between low grade ordinary and juvenile pilocytic astrocyomas (P < 0.01). The lacto-series ganglioside 3'-isoLM1 was present in all groups except PNET.. These results indicate that patterns of gangliosides could be of considerable value in refining the classification and diagnosis of primary human brain tumors. Topics: Adult; Aged; Astrocytoma; Biomarkers, Tumor; Brain Neoplasms; Female; G(M1) Ganglioside; G(M3) Ganglioside; Gangliosides; Glioblastoma; Humans; Male; Middle Aged; Nerve Growth Factors; Neuroectodermal Tumors, Primitive, Peripheral | 1994 |