gamma2-msh and Obesity

gamma2-msh has been researched along with Obesity* in 4 studies

Reviews

1 review(s) available for gamma2-msh and Obesity

ArticleYear
Alcoholism and obesity: overlapping neuropeptide pathways?
    Neuropeptides, 2003, Volume: 37, Issue:6

    Ethanol is a caloric compound, and ethanol drinking and food intake are both appetitive and consummatory behaviors. Furthermore, both ethanol and food have rewarding properties. It is therefore possible that overlapping central pathways are involved with uncontrolled eating and excessive ethanol consumption. A growing list of peptides has been shown to regulate food intake and/or energy homeostasis. Peptides such as the melanocortins, corticotropin releasing factor, and cholecystokinin promote reductions of food intake while others such as galanin and neuropeptide Y stimulate feeding. The present review highlights research aimed at determining if ingestive peptides also regulate voluntary ethanol intake, with an emphasis on the melanocortins and neuropeptide Y. It is suggested that research directed at ingestive peptides may expand our understanding of the neurobiological mechanisms that drive ethanol self-administration, and may reveal new therapeutic candidates for treating alcohol abuse and alcoholism.

    Topics: Adrenocorticotropic Hormone; Alcoholism; alpha-MSH; Animals; beta-MSH; Brain; Cholecystokinin; Corticotropin-Releasing Hormone; Eating; Ethanol; Galanin; gamma-MSH; Humans; Narcotics; Neuropeptide Y; Obesity; Receptors, Melanocortin

2003

Other Studies

3 other study(ies) available for gamma2-msh and Obesity

ArticleYear
Hypothalamic γ-melanocyte stimulating hormone gene delivery reduces fat mass in male mice
    The Journal of endocrinology, 2018, 10-01, Volume: 239, Issue:1

    γ-Melanocyte stimulating hormone (γ-MSH) is an endogenous agonist of the melanocortin 3-receptor (MC3R). Genetic disruption of MC3Rs increases adiposity and blunts responses to fasting, suggesting that increased MC3R signaling could be physiologically beneficial in the long term. Interestingly, several studies have concluded that activation of MC3Rs is orexigenic in the short term. Therefore, we aimed to examine the short- and long-term effects of γ-MSH in the hypothalamic arcuate nucleus (ARC) on energy homeostasis and hypothesized that the effect of MC3R agonism is dependent on the state of energy balance and nutrition. Lentiviral gene delivery was used to induce a continuous expression of γ-Msh only in the ARC of male C57Bl/6N mice. Parameters of body energy homeostasis were monitored as food was changed from chow (6 weeks) to Western diet (13 weeks) and back to chow (7 weeks). The γ-MSH treatment decreased the fat mass to lean mass ratio on chow, but the effect was attenuated on Western diet. After the switch back to chow, an enhanced loss in weight (−15% vs −6%) and fat mass (−37% vs −12%) and reduced cumulative food intake were observed in γ-MSH-treated animals. Fasting-induced feeding was increased on chow diet only; however, voluntary running wheel activity on Western diet was increased. The γ-MSH treatment also modulated the expression of key neuropeptides in the ARC favoring weight loss. We have shown that a chronic treatment intended to target ARC MC3Rs modulates energy balance in nutritional state-dependent manner. Enhancement of diet-induced weight loss could be beneficial in treatment of obesity.

    Topics: Adiposity; Animals; Arcuate Nucleus of Hypothalamus; Body Weight; Diet, Western; Food Deprivation; gamma-MSH; Male; Mice; Mice, Inbred C57BL; Motor Activity; Obesity; Receptor, Melanocortin, Type 3; Weight Loss

2018
Pharmacological characterization of 30 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists, synthetic agonists, and the endogenous agouti-related protein antagonist.
    Biochemistry, 2010, Jun-08, Volume: 49, Issue:22

    The melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating feeding behavior, obesity, energy homeostasis, male erectile response, and blood pressure. Since the report of the MC4R knockout mouse in 1997, the field has been searching for links between this genetic biomarker and human obesity and type 2 diabetes. More then 80 single nucleotide polymorphisms (SNPs) have been identified from human patients, both obese and nonobese controls. Many significant studies have been performed examining the pharmacological characteristics of these hMC4R SNPs in attempts to identify a molecular defects/insights that might link a genetic factor to the obese phenotype observed in patients possessing these mutations. Our laboratory has previously reported the pharmacological characterization of 40 of these polymorphic hMC4 receptors with multiple endogenous and synthetic ligands. The goal of the current study is to perform a similar comprehensive side-by-side characterization of 30 additional human hMC4R with single nucleotide polymorphisms using multiple endogenous agonists [alpha-, beta-, and gamma(2)-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH)], the antagonist agouti-related protein hAGRP(87-132), and synthetic agonists [NDP-MSH, MTII, and the tetrapeptide Ac-His-dPhe-Arg-Trp-NH(2) (JRH887-9)]. These in vitro data, in some cases, provide a putative molecular link between dysfunctional hMC4R's and human obesity. These 30 hMC4R SNPs include R7H, R18H, R18L, S36Y, P48S, V50M, F51L, E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219 V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F, and 750DelGA. All but the N240S hMC4R were identified in obese patients. Additionally, we have characterized a double I102T/V103I hMC4R. In addition to the pharmacological characterization, the hMC4R variants were evaluated for cell surface expression by flow cytometry. The F51L, I69T, and A219V hMC4Rs possessed full agonist activity and significantly decreased endogenous agonist ligand potency. At the E61K, D90N, Y157S, and C271R hMC4Rs, all agonist ligands examined were only partially efficacious in generating a maximal signaling response (partial agonists) and possessed significantly decreased endogenous agonist ligand potency. Only the A219V, G238D, and S295P hMC4Rs possessed significantly decreased AGRP(87-132) antagonist potenc

    Topics: Agouti-Related Protein; alpha-MSH; Amino Acid Sequence; beta-MSH; Binding, Competitive; Cell Line; gamma-MSH; Gene Expression Regulation; Humans; Ligands; Male; Molecular Sequence Data; Mutagenesis, Site-Directed; Obesity; Polymorphism, Genetic; Pro-Opiomelanocortin; Protein Binding; Receptor, Melanocortin, Type 4

2010
A possible role for melanocortin peptides in longitudinal growth.
    The Journal of endocrinology, 2006, Volume: 191, Issue:3

    Clinical and in vitro data suggest a link between the elevation of the melanocortin peptide, ACTH, and longitudinal growth. Overproduction of ACTH in familial glucocorticoid deficiency (FGD) is associated with increased growth and ACTH increases the differentiation of chondrocytes along the endochondral pathway in vitro. Using the leptin-deficient obese (ob/ob) mouse along with lean control littermates (n = 9-10), we investigated the effects of adrenalectomy (ADX)-induced elevated ACTH with and without peripheral administration of the MC3-R-specific agonist, gamma2-melanocyte stimulating hormone (gamma2-MSH), on longitudinal growth. Naso-anal and tibial growth were measured together with growth plate parameters; both total and zonal heights together with the proliferative index. Data were analyzed using two-way ANOVA with post hoc comparisons made using the Bonferroni correction. ADX significantly increased naso-anal length in lean mice and ADX plus gamma2-MSH administration significantly increased naso-anal length above ADX alone in ob/ob mice. gamma2-MSH administration to ADX lean and ob/ob mice significantly increased tibial length. In ob/ob mice, these changes occurred in the context of reduced food intake. Analysis of total and zonal growth plate heights suggest an increase in hypertrophic differentiation and an overall increase in growth plate turnover in ADX lean and ob/ob mice. These in vivo data show that ADX enhances linear growth and the results of gamma2-MSH treatment suggest that the melanocortin system plays a role in linear growth.

    Topics: Adrenalectomy; Adrenocorticotropic Hormone; Animals; Corticosterone; Eating; gamma-MSH; Growth; Leptin; Mice; Mice, Obese; Models, Animal; Obesity; Tibia

2006