gamma-sitosterol has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 5 studies
5 other study(ies) available for gamma-sitosterol and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
β-sitosterol attenuates high- fat diet-induced hepatic steatosis in rats by modulating lipid metabolism, inflammation and ER stress pathway.
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disorder. The naturally occurring phytosterol; β-sitosterol has antiobesogenic and anti-diabetic properties. The purpose of this study was to explore the role of β-sitosterol in preventing hepatic steatosis induced by a high-fat diet (HFD) in rats. In the current study, to induce NAFLD in the female Wister rats, an HFD was administered to them for 8 weeks. The pathogenic severity of steatosis in rats receiving an HFD diet was dramatically decreased by oral administration of β-sitosterol. After administering β-sitosterol to HFD-induced steatosis for three weeks, several oxidative stress-related markers were then assessed. We showed that β-sitosterol reduced steatosis and the serum levels of triglycerides, transaminases (ALT and AST) and inflammatory markers (IL-1β and iNOS) compared to HFD-fed rats. Additionally, β-sitosterol reduced endoplasmic reticulum stress by preventing the overexpression of inositol-requiring enzyme-1 (IRE-1α), X-box binding protein 1(sXBP1) and C/EBP homologous protein (CHOP) genes which, showing a function in the homeostatic regulation of protein folding. Also, it was found that the expression of the lipogenic factors; peroxisome proliferator-activated receptor (PPAR-α), sterol regulatory element binding protein (SREBP-1c) and carnitine palmitoyltransferase-1(CPT-1), which are involved in the regulation of the fatty acid oxidation process, may be regulated by β-sitosterol. It can be concluded that β-sitosterol may prevent NAFLD by reducing oxidative stress, endoplasmic reticulum stress and inflammatory responses, which supports the possibility of using β-sitosterol as an alternative therapy for NAFLD. Together, β-sitosterol may be an option for NAFLD prevention. Topics: Animals; Diet, High-Fat; Female; Inflammation; Lipid Metabolism; Liver; Non-alcoholic Fatty Liver Disease; Rats; Rats, Wistar | 2023 |
Effects of Stigmasterol and β-Sitosterol on Nonalcoholic Fatty Liver Disease in a Mouse Model: A Lipidomic Analysis.
To study the effects of stigmasterol and β-sitosterol on high-fat Western diet (HFWD)-induced nonalcoholic fatty liver disease (NAFLD), lipidomic analyses were conducted in liver samples collected after 33 weeks of the treatment. Principal component analysis showed these phytosterols were effective in protecting against HFWD-induced NAFLD. Orthogonal projections to latent structures-discriminate analysis (OPLS-DA) and S-plots showed that triacylglycerols (TGs), phosphatidylcholines, cholesteryl esters, diacylglycerols, and free fatty acids (FFAs) were the major lipid species contributing to these discriminations. The alleviation of NAFLD is mainly associated with decreases in hepatic cholesterol, TGs with polyunsaturated fatty acids, and alterations of free hepatic FFA. In conclusion, phytosterols, at a dose comparable to that suggested for humans by the FDA for the reduction of plasma cholesterol levels, are shown to protect against NAFLD in this long-term (33-week) study. Topics: Animals; Cholesterol; Diet, High-Fat; Disease Models, Animal; Humans; Lipid Metabolism; Liver; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Sitosterols; Stigmasterol; Triglycerides | 2018 |
Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet.
To investigate and compare the effects of two common dietary phytosterols, stigmasterol and β-sitosterol, in altering lipid metabolism and attenuating nonalcoholic fatty liver disease (NAFLD).. Stigmasterol and β-sitosterol were administered to mice at 0.4% in a high-fat western-style diet (HFWD) for 17 weeks.. Stigmasterol and β-sitosterol significantly ameliorated HFWD-induced fatty liver and metabolic abnormalities, including elevated levels of hepatic total lipids, triacylglycerols, cholesterol and liver histopathology. Both phytosterols decreased the levels of intestinal bile acids, accompanied by markedly increased fecal lipid levels. In addition, they altered the expression of genes involved in lipid metabolism. β-Sitosterol was less effective in affecting most of these parameters. Lipidomic analysis of liver and serum samples showed that stigmasterol prevented the HFWD-induced elevation of some di- and triacylglycerol species and lowering of some phospholipid species. Stigmasterol also decreased serum levels of ceramides.. Stigmasterol and β-sitosterol, at a dose corresponding to that suggested for humans by the FDA for lowering cholesterol levels, are shown to alleviate HFWD-induced NAFLD. Stigmasterol was more effective than β-sitosterol, possibly because of its suppression of hepatic lipogenic gene expression and modulation of circulating ceramide levels. Topics: Animals; Bile Acids and Salts; Ceramides; Diet, High-Fat; Disease Models, Animal; Feces; Lipid Metabolism; Mice; Non-alcoholic Fatty Liver Disease; Phospholipids; Sitosterols; Stigmasterol; Treatment Outcome; Triglycerides | 2018 |
Liver fat content is associated with an increase in cholesterol synthesis independent of statin therapy use in patients with type 2 diabetes.
We investigated how liver fat content (LFC) influences cholesterol metabolism by quantifying liver fat using proton magnetic resonance spectroscopy and by measuring the serum concentrations of lathosterol, a marker of cholesterol synthesis, and sitosterol and campesterol, two markers of cholesterol absorption. We also evaluated whether this relationship could be modified by statin therapy. The study was conducted in 263 patients with type 2 diabetes, 137 of whom (52.0%) received statin therapy.. One hundred and sixty-five patients (62.7%) had steatosis (LFC>5.5%). We performed specific analyses in patients without statin therapy and in patients treated with statin therapy. In both groups, the lathosterol to cholesterol ratio correlated positively with LFC, and in multivariate analysis, the lathosterol to cholesterol ratio was associated with LFC independently of age, gender and BMI. Sitosterol and campesterol concentrations were not associated with LFC.. Our study suggests that in patients with type 2 diabetes, LFC is associated with an increase in cholesterol synthesis that is independent of obesity or diabetes mellitus. Statin therapy does not modify this relationship. Topics: Aged; Biomarkers; Cholesterol; Diabetes Mellitus, Type 2; Dyslipidemias; Fatty Liver; Female; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Linear Models; Liver; Magnetic Resonance Spectroscopy; Male; Middle Aged; Multivariate Analysis; Non-alcoholic Fatty Liver Disease; Phytosterols; Risk Factors; Sitosterols; Treatment Outcome | 2012 |
Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity.
Non-alcoholic fatty liver disease (NAFLD) is associated with impaired glucose and lipoprotein metabolism. However, the metabolism of cholesterol in NAFLD remains unexplored. We investigated how fatty liver influences cholesterol metabolism in 242 non-diabetic subjects.. Liver fat content was measured with proton magnetic resonance spectroscopy. Cholesterol metabolism was assayed with serum non-cholesterol sterols, surrogate markers of cholesterol synthesis and absorption. The analyses were performed with gas-liquid chromatography.. A total of 114 subjects had NAFLD and 128 subjects had normal liver fat content. Non-cholesterol sterols reflecting cholesterol synthesis (cholestenol, desmosterol, and lathosterol) were higher, and those reflecting cholesterol absorption (cholestanol and plant sterols) were lower in subjects with NAFLD than in controls, independent of body mass index. Liver fat content was positively associated with markers of cholesterol synthesis (r = from 0.262 to 0.344, p < 0.001 for all) and inversely associated with markers of cholesterol absorption (r = from -0.299 to -0.336, p < 0.001 for all). In the entire study group, synthesis and absorption markers were interrelated, indicating that the homeostasis of cholesterol metabolism was maintained. LDL cholesterol was similar in the two groups.. We demonstrated that although LDL cholesterol concentrations are unchanged, cholesterol metabolism in NAFLD is characterized by increased synthesis and diminished absorption of cholesterol. These changes are associated with liver fat content independent of body weight. Topics: Adult; Aged; Body Mass Index; Case-Control Studies; Cholesterol; Cholesterol, Dietary; Cholesterol, LDL; Fatty Liver; Female; Humans; Insulin; Intestinal Absorption; Liver; Magnetic Resonance Spectroscopy; Male; Middle Aged; Non-alcoholic Fatty Liver Disease; Obesity; Sitosterols; Young Adult | 2011 |