gambogic-acid has been researched along with Glioma* in 4 studies
4 other study(ies) available for gambogic-acid and Glioma
Article | Year |
---|---|
A Gambogic Acid-Loaded Delivery System Mediated by Ultrasound-Targeted Microbubble Destruction: A Promising Therapy Method for Malignant Cerebral Glioma.
The blood-brain barrier (BBB) inhibits the delivery of macromolecular chemotherapeutic drugs to brain tumors, leading to low utilization rates and toxic side effects to surrounding tissues and organs. Ultrasonic targeted microbubble destruction (UTMD) technology can open the BBB, leading to a new type of drug delivery system with particular utility in glioma.. We have developed a new type of drug-loaded microbubble complex based on poly(lactic-co-glycolic acid) (PLGA) that targets gambogic acid (GA) to the area of brain tumors through UTMD.. GA/PLGA nanoparticles were prepared by the double emulsification method, and cationic microbubbles (CMBs) were prepared by a thin film hydration method. The GA/PLGA-CMB microbubble complex was assembled through electrostatic attractions and was characterized chemically. The anti-glioblastoma effect of GA/PLGA-CMB combined with focused ultrasound (FUS) was evaluated by biochemical and imaging assays in cultured cells and model mice.. GA/PLGA-CMB combined with FUS demonstrated a significant inhibitory effect on glioblastoma cell lines U87 and U251 as compared with controls (P<0.05). Tumor access and imaging analyses demonstrated that administration of GA/PLGA-CMBs combined with FUS can open the BBB and target the treatment of glioblastoma in a mouse model, as compared with control groups (P<0.05).. The combination of PLGA-CMB with FUS provides an effective and biocompatible drug delivery system, and its application to the delivery of GA in a mouse glioblastoma model was successful. Topics: Animals; Blood-Brain Barrier; Brain Neoplasms; Drug Delivery Systems; Glioblastoma; Glioma; Mice; Microbubbles; Xanthones | 2022 |
Ultrasound-triggered drug delivery for glioma therapy through gambogic acid-loaded nanobubble-microbubble complexes.
Glioma is one of the most common primary brain tumors. Gambogic acid (GA) is widely used in tumor chemotherapy. However, GA has poor water solubility, low bioavailability, and difficult permeability across the blood-brain barrier (BBB), leading to poor efficacy against brain tumors. In our study, we developed negatively charged GA-loaded PLGA nanobubbles [GA/poly(lactic-co-glycolic acid) (PLGA)] and conjugated them onto the surface of cationic lipid microbubbles (CMBs) through electrostatic interactions. The resulting GA/PLGA-CMB complex was characterized for its particle size, distribution, drug encapsulation efficiency, and ultrasound imaging property, revealing a high drug encapsulation efficiency and excellent contrast imaging capability. Importantly, significantly enhanced GA delivery into the brain could be observed after the intravenous administration of GA/PLGA-CMBs combined with low-intensity focused ultrasound (FUS) due to the cavitation from CMBs, which mediated blood-brain barrier (BBB) opening. Taking advantage of the opened BBB, GA/PLGA nanobubbles could be delivered into the tumor. Then, the second FUS irradiation at higher energy was used to induce the cavitation of GA/PLGA nanobubbles, producing the second cavitation on tumor cells, significantly enhancing the ability of GA to enter tumor cells and inhibit tumor growth inhibition efficacy. Topics: Blood-Brain Barrier; Drug Delivery Systems; Glioma; Humans; Microbubbles; Ultrasonography; Xanthones | 2022 |
Gambogic Acid Affects Ribosomal Occurrence in Glioma Cells by Downregulating the Phosphoinositide Kinase-3/Protein Kinase B/Mammalian Target of Rapamycin Signaling Pathway.
Gambogic acid (GA) is a natural compound with a polyprenylated xanthone structure that has antiinflammatory, antioxidant, and neuroprotective properties and acts as a chemopreventive agent. GA exhibits anti-tumor, antimicrobial, and anti-proliferative effects on cancer cells. In the current study, the effect of GA on phosphoinositide kinase-3 (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was examined in human U251 glioma cells. Cell viability and apoptosis were evaluated by MTT and Annexin V/PI Double Staining. The expressions of P38, AKT, and mTOR were evaluated by western blot and qRT-PCR, respectively. MagBeads Total RNA Extraction Kit was used to isolate cell tissue RNA. GA decreased the phosphorylation of P38, AKT, and mTOR. Inhibitors of PI3K (LY294002) enhanced the phosphorylation of P38, AKT, and mTOR. GA reduced the phosphorylation of ribosomal protein precursors (Pre) and upstream binding factor (UBF), and insulin-like growth factor I (IGF-1) further enhanced the cell proliferation and expression of Pre and UBF. These results suggested that downregulation of PI3K/AKT/mTOR signaling pathway may be an important mediator in GA-affected ribosomal occurrence in glioma cells. Topics: 1-Phosphatidylinositol 4-Kinase; Apoptosis; Cell Proliferation; Glioma; Humans; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Xanthones | 2020 |
Gambogic acid induces apoptotic cell death in T98G glioma cells.
Gambogic acid (GA), a natural product with a xanthone structure, has a broad range of anti-proliferative effects on cancer cell lines. We evaluated GA for its cytotoxic effects on T98G glioblastoma cells. GA exhibited potent anti-proliferative activity and induced apoptosis in T98G glioblastoma cells in a dose-dependent manner. Incubation of cells with GA revealed apoptotic features including increased Bax and AIF expression, cytochrome c release, and cleavage of caspase-3, -8, -9, and PARP, while Bcl-2 expression was downregulated. Furthermore, GA induced reactive oxygen species (ROS) generation in T98G cells. Our results indicate that GA increases Bax- and AIF-associated apoptotic signaling in glioblastoma cells. Topics: Antineoplastic Agents; Apoptosis; Brain Neoplasms; Caspase 3; Caspase 8; Caspase 9; Cell Line, Tumor; Cell Proliferation; Cytochromes c; Down-Regulation; Glioma; Humans; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Signal Transduction; Xanthones | 2016 |