galidesivir and Disease-Models--Animal

galidesivir has been researched along with Disease-Models--Animal* in 9 studies

Other Studies

9 other study(ies) available for galidesivir and Disease-Models--Animal

ArticleYear
Activity of Galidesivir in a Hamster Model of SARS-CoV-2.
    Viruses, 2021, 12-21, Volume: 14, Issue:1

    Coronavirus disease 2019 (COVID-19) has claimed the lives of millions of people worldwide since it first emerged. The impact of the COVID-19 pandemic on public health and the global economy has highlighted the medical need for the development of broadly acting interventions against emerging viral threats. Galidesivir is a broad-spectrum antiviral compound with demonstrated in vitro and in vivo efficacy against several RNA viruses of public health concern, including those causing yellow fever, Ebola, Marburg, and Rift Valley fever. In vitro studies have shown that the antiviral activity of galidesivir also extends to coronaviruses. Herein, we describe the efficacy of galidesivir in the Syrian golden hamster model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Treatment with galidesivir reduced lung pathology in infected animals compared with untreated controls when treatment was initiated 24 h prior to infection. These results add to the evidence of the applicability of galidesivir as a potential medical intervention for a range of acute viral illnesses, including coronaviruses.

    Topics: Adenine; Adenosine; Animals; Antiviral Agents; Cell Line; COVID-19; COVID-19 Drug Treatment; Cricetinae; Disease Models, Animal; Humans; Lung; Mesocricetus; Pyrrolidines; SARS-CoV-2; Viral Load

2021
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
An E460D Substitution in the NS5 Protein of Tick-Borne Encephalitis Virus Confers Resistance to the Inhibitor Galidesivir (BCX4430) and Also Attenuates the Virus for Mice.
    Journal of virology, 2019, 08-15, Volume: 93, Issue:16

    The adenosine analogue galidesivir (BCX4430), a broad-spectrum RNA virus inhibitor, has entered a phase 1 clinical safety and pharmacokinetics study in healthy subjects and is under clinical development for treatment of Ebola and yellow fever virus infections. Moreover, galidesivir also inhibits the reproduction of tick-borne encephalitis virus (TBEV) and numerous other medically important flaviviruses. Until now, studies of this antiviral agent have not yielded resistant viruses. Here, we demonstrate that an E460D substitution in the active site of TBEV RNA-dependent RNA polymerase (RdRp) confers resistance to galidesivir in cell culture. Galidesivir-resistant TBEV exhibited no cross-resistance to structurally different antiviral nucleoside analogues, such as 7-deaza-2'-

    Topics: Adenine; Adenosine; Alleles; Amino Acid Substitution; Animals; Antiviral Agents; Cell Line; Disease Models, Animal; Drug Resistance, Microbial; Drug Resistance, Viral; Encephalitis Viruses, Tick-Borne; Encephalitis, Tick-Borne; Genotype; Mice; Mutation; Pyrrolidines; Viral Nonstructural Proteins

2019
Galidesivir limits Rift Valley fever virus infection and disease in Syrian golden hamsters.
    Antiviral research, 2018, Volume: 156

    Rift Valley fever virus (RVFV) is a mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula. There are no approved antiviral therapies or vaccines available to treat or prevent severe disease associated with RVFV infection in humans. The adenosine analog, galidesivir (BCX4430), is a broad-spectrum antiviral drug candidate with in vitro antiviral potency (EC

    Topics: Adenine; Adenosine; Animals; Antiviral Agents; Disease Models, Animal; Injections, Intramuscular; Injections, Intraperitoneal; Liver; Mesocricetus; Purine Nucleosides; Pyrrolidines; Rift Valley Fever; Rift Valley fever virus; Spleen; Survival Analysis; Treatment Outcome

2018
Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model.
    Antiviral research, 2017, Volume: 137

    Zika virus (ZIKV) is currently undergoing pandemic emergence. While disease is typically subclinical, severe neurologic manifestations in fetuses and newborns after congenital infection underscore an urgent need for antiviral interventions. The adenosine analog BCX4430 has broad-spectrum activity against a wide range of RNA viruses, including potent in vivo activity against yellow fever, Marburg and Ebola viruses. We tested this compound against African and Asian lineage ZIKV in cytopathic effect inhibition and virus yield reduction assays in various cell lines. To further evaluate the efficacy in a relevant animal model, we developed a mouse model of severe ZIKV infection, which recapitulates various human disease manifestations including peripheral virus replication, conjunctivitis, encephalitis and myelitis. Time-course quantification of viral RNA accumulation demonstrated robust viral replication in several relevant tissues, including high and persistent viral loads observed in the brain and testis. The presence of viral RNA in various tissues was confirmed by an infectious culture assay as well as immunohistochemical staining of tissue sections. Treatment of ZIKV-infected mice with BCX4430 significantly improved outcome even when treatment was initiated during the peak of viremia. The demonstration of potent activity of BCX4430 against ZIKV in a lethal mouse model warrant its continued clinical development.

    Topics: Adenine; Adenosine; Animals; Antiviral Agents; Brain; Cell Line; Disease Models, Animal; Humans; Male; Mice; Purine Nucleosides; Pyrrolidines; RNA, Viral; Testis; Viral Load; Viremia; Virus Replication; Zika Virus; Zika Virus Infection

2017
Immucillins ImmA and ImmH Are Effective and Non-toxic in the Treatment of Experimental Visceral Leishmaniasis.
    PLoS neglected tropical diseases, 2015, Volume: 9, Issue:12

    Immucillins ImmA (IA), ImmH (IH) and SerMe-ImmH (SMIH) are synthetic deazapurine nucleoside analogues that inhibit Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis multiplication in vitro without macrophage toxicity. Immucillins are compared to the Glucantime standard drug in the chemotherapy of Leishmania (L.) infantum chagasi infection in mice and hamsters. These agents are tested for toxicity and immune system response.. BALB/c mice were infected with 107 amastigotes, treated with IA, IH, SMIH or Glucantime (2.5mg/kg/day) and monitored for clinical variables, parasite load, antibody levels and splenocyte IFN-γ, TNF-α, and IL-10 expression. Cytokines and CD4+, CD8+ and CD19+ lymphocyte frequencies were assessed in uninfected controls and in response to immucillins. Urea, creatinine, GOT and GPT levels were monitored in sera. Anti-Leishmania-specific IgG1 antibodies (anti-NH36) increased in untreated animals. IgG2a response, high levels of IFN-γ, TNF-α and lower levels of IL-10 were detected in mice treated with the immucillins and Glucantime. Immucillins permitted normal weight gain, prevented hepato-splenomegaly and cleared the parasite infection (85-89%) without renal and hepatic toxicity. Immucillins promoted 35% lower secretion of IFN-γ in uninfected controls than in infected mice. IA and IH increased the CD4+ T and CD19+ B cell frequencies. SMIH increased only the proportion of CD-19 B cells. IA and IH also cured infected hamsters with lower toxicity than Glucantime.. Immucillins IA, IH and SMIH were effective in treating leishmaniasis in mice. In hamsters, IA and IH were also effective. The highest therapeutic efficacy was obtained with IA, possibly due to its induction of a TH1 immune response. Low immucillin doses were required and showed no toxicity. Our results disclose the potential use of IA and IH in the therapy of visceral leishmaniasis.

    Topics: Adenine; Adenosine; Animals; Antibodies, Protozoan; Antiprotozoal Agents; Blood Chemical Analysis; Disease Models, Animal; Drug-Related Side Effects and Adverse Reactions; Female; Gene Expression; Immunophenotyping; Interferon-gamma; Interleukin-10; Leishmania; Leishmaniasis, Visceral; Leukocytes, Mononuclear; Mesocricetus; Mice, Inbred BALB C; Parasite Load; Purine Nucleosides; Pyrimidinones; Pyrrolidines; Spleen; T-Lymphocyte Subsets; Treatment Outcome; Tumor Necrosis Factor-alpha

2015
Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430.
    Nature, 2014, Apr-17, Volume: 508, Issue:7496

    Filoviruses are emerging pathogens and causative agents of viral haemorrhagic fever. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, exceeding 90% (ref. 1). Licensed therapeutic or vaccine products are not available to treat filovirus diseases. Candidate therapeutics previously shown to be efficacious in non-human primate disease models are based on virus-specific designs and have limited broad-spectrum antiviral potential. Here we show that BCX4430, a novel synthetic adenosine analogue, inhibits infection of distinct filoviruses in human cells. Biochemical, reporter-based and primer-extension assays indicate that BCX4430 inhibits viral RNA polymerase function, acting as a non-obligate RNA chain terminator. Post-exposure intramuscular administration of BCX4430 protects against Ebola virus and Marburg virus disease in rodent models. Most importantly, BCX4430 completely protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. In addition, BCX4430 exhibits broad-spectrum antiviral activity against numerous viruses, including bunyaviruses, arenaviruses, paramyxoviruses, coronaviruses and flaviviruses. This is the first report, to our knowledge, of non-human primate protection from filovirus disease by a synthetic drug-like small molecule. We provide additional pharmacological characterizations supporting the potential development of BCX4430 as a countermeasure against human filovirus diseases and other viral diseases representing major public health threats.

    Topics: Adenine; Adenosine; Administration, Oral; Animals; Antiviral Agents; Disease Models, Animal; DNA-Directed RNA Polymerases; Ebolavirus; Filoviridae; Filoviridae Infections; Hemorrhagic Fever, Ebola; Humans; Injections, Intramuscular; Macaca fascicularis; Marburg Virus Disease; Marburgvirus; Purine Nucleosides; Pyrrolidines; RNA; Time Factors

2014
Small molecule, big advance against Marburg virus.
    Lab animal, 2014, Apr-21, Volume: 43, Issue:5

    Topics: Adenine; Adenosine; Animals; Antiviral Agents; Bunyaviridae; Disease Models, Animal; Filoviridae; Guinea Pigs; Humans; Macaca fascicularis; Marburg Virus Disease; Marburgvirus; Mice; Purine Nucleosides; Pyrrolidines

2014
BCX4430, a novel nucleoside analog, effectively treats yellow fever in a Hamster model.
    Antimicrobial agents and chemotherapy, 2014, Volume: 58, Issue:11

    No effective antiviral therapies are currently available to treat disease after infection with yellow fever virus (YFV). A Syrian golden hamster model of yellow fever (YF) was used to characterize the effect of treatment with BCX4430, a novel adenosine nucleoside analog. Significant improvement in survival was observed after treatment with BCX4430 at 4 mg/kg of body weight per day dosed intraperitoneally (i.p.) twice daily (BID). Treatment with BCX4430 at 12.5 mg/kg/day administered i.p. BID for 7 days offered complete protection from mortality and also resulted in significant improvement of other YF disease parameters, including weight loss, serum alanine aminotransferase levels (6 days postinfection [dpi]), and viremia (4 dpi). In uninfected hamsters, BCX4430 at 200 mg/kg/day administered i.p. BID for 7 days was well tolerated and did not result in mortality or weight loss, suggesting a potentially wide therapeutic index. Treatment with BCX4430 at 12 mg/kg/day i.p. remained effective when administered once daily and for only 4 days. Moreover, BCX4430 dosed at 200 mg/kg/day i.p. BID for 7 days effectively treated YF, even when treatment was delayed up to 4 days after virus challenge, corresponding with peak viral titers in the liver and serum. BCX4430 treatment did not preclude a protective antibody response, as higher neutralizing antibody (nAb) concentrations corresponded with increasing delays of treatment initiation, and greater nAb responses resulted in the protection of animals from a secondary challenge with YFV. In summary, BCX4430 is highly active in a hamster model of YF, even when treatment is initiated at the peak of viral replication.

    Topics: Adenine; Adenosine; Alanine Transaminase; Animals; Antibodies, Neutralizing; Antibodies, Viral; Antiviral Agents; Cells, Cultured; Cricetinae; Disease Models, Animal; Female; Mesocricetus; Purine Nucleosides; Pyrrolidines; Treatment Outcome; Viral Plaque Assay; Viremia; Yellow Fever; Yellow fever virus

2014