gala-peptide has been researched along with Neoplasms* in 2 studies
2 other study(ies) available for gala-peptide and Neoplasms
Article | Year |
---|---|
Multi-functional self-assembled nanoparticles for pVEGF-shRNA loading and anti-tumor targeted therapy.
Although RNA interference (RNAi) technology shows great potential in cancer treatment, the tumor target delivery and sufficient cytosolic transport of RNAi agents are still the main obstacles for its clinical applications. Herein, we report a functional supramolecular self-assembled nanoparticle vector for RNAi agent loading and tumor target therapy. Molecular block adamantane-grafted poly(ethylene glycol) (Ad-PEG) was modified with epidermal growth factor receptor (EGFR)-specific binding ligand GE11 or pH-sensitive fusogenic peptide GALA and then used for self-assembly with cyclodextrin-grafted branched polyethylenimine (CD-PEI), adamantane-grafted polyamidoamine dendrimer (Ad-PAMAM), and plasmid DNA containing a small hairpin RNA expression cassette against vascular endothelial growth factor (VEGF) into functional DNA-loaded supramolecular nanoparticles (GE11&GALA-pshVEGF@SNPs) based on molecular recognition and charge interaction. These functional peptides facilitated the target cell binding, internalization, and endosomal escape of GE11&GALA-pshVEGF@SNPs, resulting in increased reporter gene expression and efficient targeted gene silencing. The systemic delivery of the GE11&GALA-pshVEGF@SNPs can efficiently downregulate the intratumoral VEGF protein levels, reduce blood vessel formation, and significantly inhibit A549 xenograft tumor growth. These results reveal the potential of these multifunctional self-assembled nanoparticles as a nucleic acid drug delivery system for the treatment of lung cancer. Topics: A549 Cells; Adamantane; Animals; DNA; Female; Gene Silencing; Humans; Mice, Nude; Molecular Targeted Therapy; Nanoparticles; Neoplasms; Neovascularization, Pathologic; Peptides; Plasmids; Polymers; RNA, Small Interfering; Tumor Burden; Vascular Endothelial Growth Factor A | 2020 |
A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo.
Previously, we developed a multifunctional envelope-type nano device (MEND) for efficient delivery of both pDNA and siRNA. Modification of a MEND with polyuethylene glycol, i.e., PEGylation, is a potential strategy for in vivo delivery of MENDs to tumor tissue. However, PEGylation also inhibits both uptake and endosomal escape of MENDs. To overcome these limitations, we developed a PEG-peptide-DOPE (PPD) that can be cleaved in a matrix metalloproteinase (MMP)-rich environment. In this study, to further improve the silencing activity of encapsulated siRNA, we modified the PPD-MEND with a pH-sensitive fusogenic GALA peptide (GALA/PPD-MEND). First, we determined the GALA and PPD content that would optimize the synergistic functions of GALA and PPD. The most efficient gene silencing activity was achieved when GALA and either conventional PEG-lipid or PPD were used to modify the MEND at a molar ratio of 1:1. In this case, the silencing activity was comparable to that achieved when using a MEND that had not been modified with PEG (unmodified MEND). Furthermore, in vivo topical administration revealed that optimized PPD/GALA-MENDa resulted in more efficient gene silencing compared with unmodified MENDs. Collectively, data demonstrate that introduction of both of a pH-sensitive fusogenic GALA peptide and PPD into the MEND facilitates nanoparticle endosomal escape, thereby enhancing the efficiency of siRNA delivery and gene silencing. Topics: Animals; Gene Silencing; HeLa Cells; Humans; Hydrogen-Ion Concentration; Male; Mice; Mice, Inbred BALB C; Nanoparticles; Neoplasms; Peptides; Phosphatidylethanolamines; Polyethylene Glycols; RNA, Small Interfering | 2009 |