g007-lk has been researched along with Neoplasms* in 3 studies
1 review(s) available for g007-lk and Neoplasms
Article | Year |
---|---|
Small-Molecule Inhibitors of Tankyrases as Prospective Therapeutics for Cancer.
Tankyrases are multifunctional poly(adenosine diphosphate-ribose) polymerases that regulate diverse biological processes including telomere maintenance and cellular signaling. These processes are often implicated in a number of human diseases, with cancer being the most prevalent example. Accordingly, tankyrase inhibitors have gained increasing attention as potential therapeutics. Since the discovery of XAV939 and IWR-1 as the first tankyrase inhibitors over two decades ago, tankyrase-targeted drug discovery has made significant progress. This review starts with an introduction of tankyrases, with emphasis placed on their cancer-related functions. Small-molecule inhibitors of tankyrases are subsequently delineated based on their distinct modes of binding to the enzymes. In addition to inhibitors that compete with oxidized nicotinamide adenine dinucleotide (NAD Topics: Catalytic Domain; Drug Discovery; Humans; Neoplasms; Tankyrases | 2022 |
2 other study(ies) available for g007-lk and Neoplasms
Article | Year |
---|---|
Tankyrase disrupts metabolic homeostasis and promotes tumorigenesis by inhibiting LKB1-AMPK signalling.
The LKB1/AMPK pathway plays a major role in cellular homeostasis and tumor suppression. Down-regulation of LKB1/AMPK occurs in several human cancers and has been implicated in metabolic diseases. However, the precise upstream regulation of LKB1-AMPK pathway is largely unknown. Here, we report that AMPK activation by LKB1 is regulated by tankyrases. Tankyrases interact with and ribosylate LKB1, promoting its K63-linked ubiquitination by an E3 ligase RNF146, which blocks LKB1/STRAD/MO25 complex formation and LKB1 activation. LKB1 activation by tankyrase inhibitors induces AMPK activation and suppresses tumorigenesis. Similarly, the tankyrase inhibitor G007-LK effectively regulates liver metabolism and glycemic control in diabetic mice in a LKB1-dependent manner. In patients with lung cancer, tankyrase levels negatively correlate with p-AMPK levels and poor survival. Taken together, these findings suggest that tankyrase and RNF146 are major up-stream regulators of LKB1-AMPK pathway and provide another focus for cancer and metabolic disease therapies. Topics: AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Animals; Carcinogenesis; Cell Line, Tumor; Energy Metabolism; Enzyme Inhibitors; HeLa Cells; Homeostasis; Humans; MCF-7 Cells; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Nude; Neoplasms; para-Aminobenzoates; Protein Serine-Threonine Kinases; Signal Transduction; Sulfones; Tankyrases; Triazoles; Xenograft Model Antitumor Assays | 2019 |
Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance.
The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment. Topics: Animals; Antineoplastic Agents; Benzeneacetamides; beta Catenin; Brain Neoplasms; Camptothecin; Celecoxib; Cisplatin; Colorectal Neoplasms; Dacarbazine; DNA Modification Methylases; DNA Repair Enzymes; Doxorubicin; Drug Resistance, Neoplasm; Flow Cytometry; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Glioma; Glucose-6-Phosphate Isomerase; Heterocyclic Compounds, 3-Ring; Humans; Immunoblotting; Immunohistochemistry; Irinotecan; Medulloblastoma; Mice; Neoplasm Transplantation; Neoplasms; Neuroblastoma; Pyrans; Pyrazines; Pyridines; Real-Time Polymerase Chain Reaction; Sulfones; Temozolomide; Triazoles; Tumor Suppressor Proteins; Vincristine; Wnt Proteins; Wnt Signaling Pathway | 2015 |