g(m3)-ganglioside and Parkinson-Disease

g(m3)-ganglioside has been researched along with Parkinson-Disease* in 4 studies

Other Studies

4 other study(ies) available for g(m3)-ganglioside and Parkinson-Disease

ArticleYear
Ganglioside GM3 stimulates lipid-protein co-assembly in α-synuclein amyloid formation.
    Biophysical chemistry, 2023, Volume: 293

    Parkinson's disease is characterized by the aggregation of the presynaptic protein α-synuclein (αSyn), and its co-assembly with lipids and other cellular matter in the brain. Here we investigated lipid-protein co-assembly in a system composed of αSyn and model membranes containing the glycolipid ganglioside GM3. We quantified the uptake of lipids into the co-assembled aggregates and investigated how lipid molecular dynamics is altered by being present in the co-assemblies using solution

    Topics: alpha-Synuclein; Amyloid; Amyloidogenic Proteins; G(M3) Ganglioside; Humans; Parkinson Disease

2023
Elevated GM3 plasma concentration in idiopathic Parkinson's disease: A lipidomic analysis.
    PloS one, 2017, Volume: 12, Issue:2

    Parkinson's disease (PD) is a common neurodegenerative disease whose pathological hallmark is the accumulation of intracellular α-synuclein aggregates in Lewy bodies. Lipid metabolism dysregulation may play a significant role in PD pathogenesis; however, large plasma lipidomic studies in PD are lacking. In the current study, we analyzed the lipidomic profile of plasma obtained from 150 idiopathic PD patients and 100 controls, taken from the 'Spot' study at Columbia University Medical Center in New York. Our mass spectrometry based analytical panel consisted of 520 lipid species from 39 lipid subclasses including all major classes of glycerophospholipids, sphingolipids, glycerolipids and sterols. Each lipid species was analyzed using a logistic regression model. The plasma concentrations of two lipid subclasses, triglycerides and monosialodihexosylganglioside (GM3), were different between PD and control participants. GM3 ganglioside concentration had the most significant difference between PD and controls (1.531±0.037 pmol/μl versus 1.337±0.040 pmol/μl respectively; p-value = 5.96E-04; q-value = 0.048; when normalized to total lipid: p-value = 2.890E-05; q-value = 2.933E-03). Next, we used a collection of 20 GM3 and glucosylceramide (GlcCer) species concentrations normalized to total lipid to perform a ROC curve analysis, and found that these lipids compare favorably with biomarkers reported in previous studies (AUC = 0.742 for males, AUC = 0.644 for females). Our results suggest that higher plasma GM3 levels are associated with PD. GM3 lies in the same glycosphingolipid metabolic pathway as GlcCer, a substrate of the enzyme glucocerebrosidase, which has been associated with PD. These findings are consistent with previous reports implicating lower glucocerebrosidase activity with PD risk.

    Topics: Aged; Aged, 80 and over; Biomarkers; Case-Control Studies; Female; G(M3) Ganglioside; Humans; Male; Middle Aged; Parkinson Disease; Sex Characteristics

2017
Acceleration of α-synuclein aggregation by exosomes.
    The Journal of biological chemistry, 2015, Jan-30, Volume: 290, Issue:5

    Exosomes are small vesicles released from cells into extracellular space. We have isolated exosomes from neuroblastoma cells and investigated their influence on the aggregation of α-synuclein, a protein associated with Parkinson disease pathology. Using cryo-transmission electron microscopy of exosomes, we found spherical unilamellar vesicles with a significant protein content, and Western blot analysis revealed that they contain, as expected, the proteins Flotillin-1 and Alix. Using thioflavin T fluorescence to monitor aggregation kinetics, we found that exosomes catalyze the process in a similar manner as a low concentration of preformed α-synuclein fibrils. The exosomes reduce the lag time indicating that they provide catalytic environments for nucleation. The catalytic effects of exosomes derived from naive cells and cells that overexpress α-synuclein do not differ. Vesicles prepared from extracted exosome lipids accelerate aggregation, suggesting that the lipids in exosomes are sufficient for the catalytic effect to arise. Using mass spectrometry, we found several phospholipid classes in the exosomes, including phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, and the gangliosides GM2 and GM3. Within each class, several species with different acyl chains were identified. We then prepared vesicles from corresponding pure lipids or defined mixtures, most of which were found to retard α-synuclein aggregation. As a striking exception, vesicles containing ganglioside lipids GM1 or GM3 accelerate the process. Understanding how α-synuclein interacts with biological membranes to promote neurological disease might lead to the identification of novel therapeutic targets.

    Topics: alpha-Synuclein; Exosomes; G(M1) Ganglioside; G(M2) Ganglioside; G(M3) Ganglioside; Humans; Parkinson Disease; Phospholipids; Unilamellar Liposomes

2015
Altered ion channel formation by the Parkinson's-disease-linked E46K mutant of alpha-synuclein is corrected by GM3 but not by GM1 gangliosides.
    Journal of molecular biology, 2010, Mar-19, Volume: 397, Issue:1

    Alpha-synuclein (alpha-syn) is an amyloidogenic protein that plays a key role in the pathogenesis of Parkinson's disease (PD). The ability of alpha-syn oligomers to form ionic channels is postulated as a channelopathy mechanism in human brain. Here we identified a ganglioside-binding domain in alpha-syn (fragment 34-50), which includes the mutation site 46 linked to a familial form of PD (E46K). We show that this fragment is structurally related to the common glycosphingolipid-binding domain (GBD) shared by various microbial and amyloid proteins, including Alzheimer's beta-amyloid peptide. alpha-Syn GBD interacts with several glycosphingolipids but has a marked preference for GM3, a minor brain ganglioside whose expression increases with aging. The alpha-syn mutant E46K has a stronger affinity for GM3 than the wild-type protein, and the interaction is inhibited by 3'-sialyllactose (the glycone part of GM3). Alanine substitutions of Lys34 and Tyr39 in synthetic GBD peptides resulted in limited interaction with GM3, demonstrating the critical role of these residues in GM3 recognition. When incubated with reconstituted phosphatidylcholine bilayers, the E46K protein formed channels that are five times less conductive than those formed by wild-type alpha-syn, exhibit a higher selectivity for cations, and present an asymmetrical response to voltage and nonstop single-channel activity. This E46K-associated channelopathy was no longer observed when GM3 was present in phosphatidylcholine bilayers. This corrective effect was highly specific for GM3, since it was not obtained with the major brain ganglioside GM1 but was still detected in bilayer membranes containing both GM3 and GM1. Moreover, synthetic GBD peptides prevented the interaction of alpha-syn proteins with GM3, thus abolishing the regulatory effects of GM3 on alpha-syn-mediated channel formation. Overall, these data show that GM3 can specifically regulate alpha-syn-induced channel formation and raise the intriguing possibility that this minor brain ganglioside could play a key protective role in the pathogenesis of PD.

    Topics: alpha-Synuclein; Amino Acid Sequence; Amino Acid Substitution; G(M1) Ganglioside; G(M3) Ganglioside; Humans; Hydrogen Bonding; Ion Channels; Micelles; Models, Molecular; Molecular Sequence Data; Mutant Proteins; Parkinson Disease; Protein Structure, Secondary; Protein Structure, Tertiary

2010