g(m3)-ganglioside and Aortic-Diseases

g(m3)-ganglioside has been researched along with Aortic-Diseases* in 3 studies

Other Studies

3 other study(ies) available for g(m3)-ganglioside and Aortic-Diseases

ArticleYear
Enhancing of GM3 synthase expression during differentiation of human blood monocytes into macrophages as in vitro model of GM3 accumulation in atherosclerotic lesion.
    Molecular and cellular biochemistry, 2009, Volume: 330, Issue:1-2

    In previous studies, we showed that ganglioside levels (GM3 being the main ganglioside) in human aortic intima isolated from atherosclerotic lesions were 5 times greater compared to intima from non-diseased vascular areas. Recently, we found that GM3 and GM3 synthase levels in differentiated in vitro macrophages were five and ten times higher, respectively, compared to freshly isolated human monocytes. In this article, we report that GM3 synthase mRNA levels were significantly higher in differentiated human monocyte-derived macrophages compared to monocytes and in atherosclerotic aorta compared to normal aorta. The depletion of GM3 synthesis in cultured monocyte-derived macrophages with DL-threo-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol, an inhibitor of ganglioside synthesis, delayed the acquisition of CD206 antigen, prevented the loss of CD163 antigen and enhanced anti-inflammatory cytokine (CCL18) secretion. In the current study, we performed purification of CMP-N-acetylneuraminic acid:lactosylceramide alpha2,3-sialyltransferase (GM3 synthase) from Triton X-100 extract of human blood mononuclear cells by immunoaffinity chromatography on Sepharose coupled with anti-GM3 synthase antibody. Comparison with several glycolipid substrates showed high specificity of the purified enzyme for lactosylceramide. The apparent K(M) for lactosylceramide and CMP-NeuAc were 101 and 180 muM, respectively. Analysis of the purified enzyme by SDS-PAGE followed by the anti-GM3 synthase antibody probing detected two bands with apparent molecular masses of 60 and 64 kDa. There were no other protein bands as revealed by Coomassie Blue staining. Thus, ganglioside GM3 may be considered as a physiological modulator of macrophage differentiation in human atherosclerotic aorta. The presented data suggest that up-regulation of GM3 levels is an element of monocyte/macrophage differentiation that provides a tool for control of macrophage accumulation in inflammatory loci.

    Topics: Aortic Diseases; Atherosclerosis; Cell Differentiation; G(M3) Ganglioside; Gene Expression Regulation, Enzymologic; Humans; Macrophages; Monocytes; RNA, Messenger; Sialyltransferases

2009
Phenotype determination of anti-GM3 positive cells in atherosclerotic lesions of the human aorta. Hypothetical role of ganglioside GM3 in foam cell formation.
    Biochimica et biophysica acta, 2001, Feb-14, Volume: 1535, Issue:2

    Earlier we reported that atherosclerotic plaques contain cells which were specifically and very intensively stained with anti-GM3 antibodies although no GM3 positive cells were detected in the normal non-diseased arterial intima. Because of their lipid inclusions, GM3 positive cells in atherosclerotic lesions seemed to be foam cells but their origin needed clarification. Using an immunohistochemical technique in the present work, we showed that some of these foam cells contained CD68 antigen. However, the most intense accumulation of GM3 occurred in the areas composed of foam cells which did not stain with any cell type-specific antibodies, including antibodies to macrophages (anti-CD68) and smooth muscle cells (anti-smooth muscle alpha-actin), perhaps, because the cell type-specific antigens were lost during the transformation of intimal cells into foam cells. Ultrastructural analysis of the areas where foam cells overexpressed GM3 demonstrated that some foam cells lacked both a basal membrane and myofilaments but contained a large number of secondary lysosomes and phagolysosomes, morphological features which might indicate their macrophage origin. Other foam cells contained a few myofilaments and fragments of basal membrane around their plasmalemmal membrane, suggesting a smooth muscle cell origin. These observations indicate that accumulation of excessive amounts of GM3 occurs in different cell types transforming into foam cells. We suggest that up-regulation of GM3 synthesis in intimal cells might be an essential event in foam cell formation. Shedding of a large number of membrane-bound microvesicles from the cell surface of foam cells was observed in areas of atherosclerotic lesions corresponding to extracellular GM3 accumulation. We speculate that extracellularly localised GM3 might affect the differentiation and modification of intimal cells in atherosclerotic lesions.

    Topics: Adult; Antibodies; Antigens, CD; Aortic Diseases; Arteriosclerosis; CD48 Antigen; Foam Cells; G(M3) Ganglioside; Humans; Immunohistochemistry; Lipoproteins, LDL; Male; Middle Aged; Muscle, Smooth, Vascular; Phenotype; Tunica Intima

2001
Atherosclerotic aortic gangliosides enhance integrin-mediated platelet adhesion to collagen.
    Arteriosclerosis, thrombosis, and vascular biology, 1999, Volume: 19, Issue:3

    Gangliosides, sialic acid-containing glycosphingolipids, accumulate in atherosclerotic vessels. Their role in the pathogenesis of atherosclerosis is unknown. Gangliosides isolated from tumor cells promote collagen-stimulated platelet aggregation and ATP secretion and enhance platelet adhesion to immobilized collagen. These activities are all mediated by ganglioside effects on the platelet integrin collagen receptor alpha2beta1. Therefore, we hypothesized that gangliosides isolated from atherosclerotic plaques would enhance platelet adhesion to immobilized collagen, a major component of the subendothelial matrix of blood vessels. Furthermore, we questioned whether this effect of atherosclerotic gangliosides might play a role in the pathogenesis of atherosclerosis. To test this hypothesis, we isolated the gangliosides from postmortem aortas of patients with extensive atherosclerotic disease and examined their effects on platelet adhesion. Samples of aortic tissue taken from areas involved with atherosclerotic plaque demonstrated accumulation of gangliosides (64.9+/-6.5 nmol/g wet weight) compared with gangliosides isolated from control normal aortic tissue taken from children who died of noncardiac causes (NAGs; 21.1+/-6.4 nmol/g wet weight). Interestingly, samples of tissue taken from diseased aortas but from areas not involved with gross plaque formation also demonstrated ganglioside accumulation (47.6+/-12.8 nmol/g wet weight). Next, the activity of each of these gangliosides on platelet adhesion to immobilized type I collagen was studied. Atherosclerotic aortic gangliosides (AAGs) as well as those isolated from grossly unaffected areas of the same aorta (UAGs) both increased platelet adhesion compared with control NAGs (OD570, 0. 37+/-0.11 and 0.29+/-0.14 versus 0.16+/-0.07, respectively; P<0.01 and P<0.05, respectively). These OD570 values corresponded to 9x10(5), 8x10(4), and 6x10(3) platelets per well after preincubation with 5 micromol/L AAG, UAG, and NAG, respectively. Increased adhesion was observed after preincubation with as little as 0.5 micromol/L AAG, and maximal adhesion was seen at 2.5 micromol/L, with a plateau extending to the highest concentration tested, 10 micromol/L. The effect of AAGs on platelet adhesion to collagen was abrogated by incubation of treated platelets with F-17 anti-alpha2 monoclonal antibody (OD570, 0.13+/-0.02). Finally, the effects of the major individual gangliosides isolated from atherosclerotic tissues, GM3 and GD

    Topics: Aged; Aorta; Aortic Diseases; Arteriosclerosis; Blood Platelets; Collagen; Female; G(M3) Ganglioside; Gangliosides; Humans; In Vitro Techniques; Integrins; Male; Middle Aged; Platelet Adhesiveness; Receptors, Collagen

1999