g(m2)-ganglioside and Urinary-Bladder-Neoplasms

g(m2)-ganglioside has been researched along with Urinary-Bladder-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for g(m2)-ganglioside and Urinary-Bladder-Neoplasms

ArticleYear
Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway.
    Proceedings of the National Academy of Sciences of the United States of America, 2008, Feb-12, Volume: 105, Issue:6

    Ganglioside GM2 complexed with tetraspanin CD82 in glycosynaptic microdomain of HCV29 and other epithelial cells inhibits hepatocyte growth factor-induced cMet tyrosine kinase. In addition, adhesion of HCV29 cells to extracellular matrix proteins also activates cMet kinase through "cross-talk" of integrins with cMet, leading to inhibition of cell motility and growth. Present studies indicate that cell motility and growth are greatly influenced by expression of GM2, GM3, or GM2/GM3 complexes, which affect cMet kinase activity of various types of cells, based on the following series of observations: (i) Cells expressing CD82, cultured with GM2 and GM3 cocoated on silica nanospheres, displayed stronger and more consistent motility inhibition than those cultured with GM2 or GM3 alone or with other glycosphingolipids. (ii) GM2-GM3, in the presence of Ca2+ form a heterodimer, as evidenced by electrospray ionization (ESI) mass spectrometry and by specific reactivity with mAb 8E11, directed to GM2/GM3 dimer structure. (iii) Cells expressing cMet and CD82 were characterized by enhanced motility associated with HGF-induced cMet activation. Both cMet and motility were strongly inhibited by culturing cells with GM2/GM3 dimer coated on nanospheres. (iv) Adhesion of HCV29 or YTS-1/CD82 cells to laminin-5-coated plate activated cMet kinase in the absence of HGF, whereas GM2/GM3 dimer inhibited adhesion-induced cMet kinase activity and inhibited cell motility. (v) Inhibited cell motility as in i, iii, and iv was restored to normal level by addition of mAb 8E11, which blocks interaction of GM2/GM3 dimer with CD82. Signaling through Src and MAP kinases is activated or inhibited in close association with cMet kinase, in response to GM2/GM3 dimer interaction with CD82. Thus, a previously uncharacterized GM2/GM3 heterodimer complexed with CD82 inhibits cell motility through CD82-cMet or integrin-cMet pathway.

    Topics: Animals; Cell Line; Cell Movement; CHO Cells; Cricetinae; Cricetulus; Dimerization; G(M2) Ganglioside; G(M3) Ganglioside; Kangai-1 Protein; Nanospheres; Proto-Oncogene Proteins c-met; Signal Transduction; Silicon Dioxide; Spectrometry, Mass, Electrospray Ionization; Urinary Bladder; Urinary Bladder Neoplasms

2008
Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse.
    The Journal of biological chemistry, 2007, Mar-16, Volume: 282, Issue:11

    Glycosphingolipids (GSLs) at the cell surface membrane are associated or complexed with signal transducers (Src family kinases and small G-proteins), tetraspanins, growth factor receptors, and integrins. Such organizational framework, defining GSL-modulated or -dependent cell adhesion, motility, and growth, is termed "glycosynapse" (Hakomori, S., and Handa, K. (2002) FEBS Lett. 531, 88-92; Hakomori, S. (2004) Ann. Braz. Acad. Sci. 76, 553-572). We describe here the functional organization of the glycosynaptic microdomain, and the mechanisms for control of cell motility and invasiveness, in normal bladder epithelial HCV29 cells versus highly invasive bladder cancer YTS1 cells, both derived from transitional epithelia. (i) Ganglioside GM2, but not GM3 or globoside, interacted specifically with tetraspanin CD82, and such a complex inhibited hepatocyte growth factor (HGF)-induced activation of Met tyrosine kinase in a dose-dependent manner. (ii) Depletion of GM2 in HCV29 cells by treatment with D-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4), or reduction of CD82 expression by RNA interference, significantly enhanced HGF-induced Met tyrosine kinase and cell motility. (iii) In contrast, YTS1 cells, lacking CD82, displayed HGF-independent activation of Met tyrosine kinase and high cell motility. Transfection of the CD82 gene to YTS1 inhibited HGF dose-dependent Met tyrosine kinase activity and cell motility, due to formation of the GM2-CD82 complex. (iv) Adhesion of YTS1 or YTS1/CD82 cells to laminin-5-coated plates, as compared with noncoated plates, strongly enhanced Met activation, and the degree of activation was further increased in association with GSL depletion by P4. Laminin-5-dependent Met activation was minimal in HCV29 cells. These findings indicate that GSL, particularly GM2, forms a complex with CD82, and that such complex interacts with Met and thereby inhibits HGF-induced Met tyrosine kinase activity, as well as integrin to Met cross-talk.

    Topics: Cell Line, Tumor; Cell Movement; Cell Nucleus; G(M2) Ganglioside; Gangliosides; Glycoproteins; Humans; Integrins; Kangai-1 Protein; Models, Biological; Phosphorylation; Protein Binding; Signal Transduction; Synapses; Urinary Bladder Neoplasms

2007