g(m1)-ganglioside and Substance-Withdrawal-Syndrome

g(m1)-ganglioside has been researched along with Substance-Withdrawal-Syndrome* in 4 studies

Other Studies

4 other study(ies) available for g(m1)-ganglioside and Substance-Withdrawal-Syndrome

ArticleYear
Naloxone rapidly evokes endogenous kappa opioid receptor-mediated hyperalgesia in naïve mice pretreated briefly with GM1 ganglioside or in chronic morphine-dependent mice.
    Brain research, 2007, Sep-05, Volume: 1167

    Low-dose naloxone-precipitated withdrawal hyperalgesia is a reliable indicator of physical dependence after chronic morphine treatment. A remarkably similar long-lasting (>3-4 h) hyperalgesia is evoked by injection of a low dose of naloxone (10 microg/kg, s.c.) in naïve mice after acute pretreatment with the glycolipid, GM1 ganglioside (1 mg/kg) (measured by warm-water-immersion tail-flick assays). GM1 treatment markedly increases the efficacy of excitatory Gs-coupled opioid receptor signaling in nociceptive neurons. Co-treatment with an ultra-low-dose (0.1 ng/kg, s.c.) of the broad-spectrum opioid receptor antagonist, naltrexone or the selective kappa opioid receptor antagonist, nor-binaltorphimine, blocks naloxone-evoked hyperalgesia in GM1-pretreated naïve mice and unmasks prominent, long-lasting (>4 h) inhibitory opioid receptor-mediated analgesia. This unmasked analgesia can be rapidly blocked by injection after 1-2 h of a high dose of naltrexone (10 mg/kg) or nor-binaltorphimine (0.1 mg/kg). Because no exogenous opioid is administered to GM1-treated mice, we suggest that naloxone may evoke hyperalgesia by inducing release of endogenous bimodally acting opioid agonists from neurons in nociceptive networks by antagonizing putative presynaptic inhibitory opioid autoreceptors that "gate" the release of endogenous opioids. In the absence of exogenous opioids, the specific pharmacological manipulations utilized in our tail-flick assays on GM1-treated mice provide a novel bioassay to detect the release of endogenous bimodally acting (excitatory/inhibitory) opioid agonists. Because mu excitatory opioid receptor signaling is blocked by ultra-low doses of naloxone, the higher doses of naloxone that evoke hyperalgesia in GM1-treated mice cannot be mediated by activation of mu opioid receptors. Co-treatment with ultra-low-dose naltrexone or nor-binaltorphimine may selectively block signaling by endogenous GM1-sensitized excitatory kappa opioid receptors, unmasking inhibitory kappa opioid receptor signaling, and converting endogenous opioid receptor-mediated hyperalgesia to analgesia. Co-treatment with kelatorphan stabilizes putative endogenous opioid peptide agonists released by naloxone in GM1-treated mice, so that analgesia is evoked rather than hyperalgesia. Acute treatment of chronic morphine-dependent mice with ultra-low-dose naltrexone (0.1 ng/kg) results in remarkably similar rapid blocking of naloxone (10 microg/kg)-precipitated withdrawal hyperalgesia

    Topics: Analgesics, Opioid; Animals; Chronic Disease; Dipeptides; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Synergism; G(M1) Ganglioside; Hyperalgesia; Male; Mice; Morphine; Morphine Dependence; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptors; Opioid Peptides; Receptors, Opioid, kappa; Substance Withdrawal Syndrome

2007
Monosialoganglioside (GM1) attenuates the behavioural effects of long-term haloperidol administration in supersensitive rats.
    European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 2004, Volume: 14, Issue:2

    In the present study we investigated the effects of co-administration of GM(1) (15.0 mg/kg, twice daily, for 30 days) and haloperidol (1.0 mg/kg, twice daily, for 30 days), as well as the effects of a 5-day treatment with this dose of GM(1) after withdrawal from haloperidol in rats. The animals were evaluated in the open-field test and apomorphine-induced stereotyped behaviour. The results show that GM(1) was able to attenuate dopaminergic supersensitivity evaluated by the locomotion frequency at 24 and 48 h after the withdrawal from haloperidol. On the other hand, rearing frequency was changed neither by haloperidol nor by GM(1.) In haloperidol-treated rats immobility time differs from 30 min observation session in comparison with the following sessions after the withdrawal from neuroleptic. Apomorphine-induced stereotyped behaviour produced a significant increase in scores of haloperidol-withdrawn rats. GM(1) did not modify the haloperidol effects and did not change the dopamine receptor affinity to apomorphine 100 h from abrupt neuroleptic withdrawal.

    Topics: Analysis of Variance; Animals; Apomorphine; Behavior, Animal; Dopamine Agonists; Dopamine Antagonists; Drug Administration Schedule; Drug Interactions; G(M1) Ganglioside; Haloperidol; Immobilization; Locomotion; Male; Rats; Rats, Wistar; Stereotyped Behavior; Substance Withdrawal Syndrome; Time Factors

2004
GM1 and piracetam do not revert the alcohol-induced depletion of cholinergic fibers in the hippocampal formation of the rat.
    Alcohol (Fayetteville, N.Y.), 1999, Volume: 19, Issue:1

    Chronic alcohol consumption causes a depletion of the cholinergic fiber network in the rat hippocampal formation, which is not ameliorated by alcohol withdrawal. Following withdrawal from alcohol, there is a further loss of intrinsic hippocampal cholinergic neurons. In this study, we investigated whether treatment with putative neuroprotective agents during the entire withdrawal period would have beneficial effects upon the hippocampal cholinergic innervation. Adult male rats were alcohol-fed for 6 months and subsequently withdrawn from alcohol for 6 months. Some animals were treated with either ganglioside GM1 (35 mg/kg body weight s.c.), vehicle (saline s.c.), or piracetam (800 mg/kg body weight p.o.) for the entire withdrawal period. Choline acetyltransferase (ChAT) immunoreactive (IR) fibers and neurons were analyzed quantitatively in all four animal groups. There were no significant differences in the density of the ChAT-IR hippocampal fiber network when the pure withdrawal and withdrawal + vehicle groups were compared to the withdrawal + GM1 or withdrawal + piracetam groups. In contrast, the number of ChAT-IR interneurons in the hippocampal formation was higher in the withdrawal + GM1 or withdrawal + piracetam groups than in the pure withdrawal and withdrawal + vehicle groups. These results indicate that, in the doses used, neither neuroprotective agent had an effect upon the extrinsic cholinergic innervation, but they had a beneficial effect upon the hippocampal intrinsic cholinergic system.

    Topics: Animals; Central Nervous System Depressants; Cholinergic Fibers; Ethanol; G(M1) Ganglioside; Hippocampus; Male; Neuroprotective Agents; Piracetam; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome

1999
Monosialoganglioside increased the in vivo affinity of D2 receptors for apomorphine in supersensitive rats.
    Annals of the New York Academy of Sciences, 1998, Jun-19, Volume: 845

    Topics: Animals; Antipsychotic Agents; Apomorphine; Corpus Striatum; G(M1) Ganglioside; Haloperidol; Kinetics; Metoclopramide; Rats; Receptors, Dopamine D2; Stereotyped Behavior; Substance Withdrawal Syndrome

1998