g(m1)-ganglioside and Memory-Disorders

g(m1)-ganglioside has been researched along with Memory-Disorders* in 11 studies

Other Studies

11 other study(ies) available for g(m1)-ganglioside and Memory-Disorders

ArticleYear
CD33/TREM2 Signaling Mediates Sleep Deprivation-Induced Memory Impairment by Regulating Microglial Phagocytosis.
    Neuromolecular medicine, 2023, Volume: 25, Issue:2

    Sleep deprivation causes significant memory impairment in healthy adults. Extensive research has focused on identifying the biological mechanisms underlying memory impairment. Microglia-mediated synaptic elimination plays an indispensable role in sleep deprivation. Here, the potential role of the CD33/TREM2 signaling pathway in modulating memory decline during chronic sleep restriction (CSR) was evaluated. In this study, adult male C57BL/6 mice were sleep-restricted using an automated sleep deprivation apparatus for 20 h per day for 7 days. The Y-maze test revealed that spontaneous alternation was significantly reduced in CSR mice compared with control mice. The percentage of exploratory preference for the novel object in CSR mice was significantly decreased compared with that in control mice. These memory deficits correlated with aberrant microglial activation and increased phagocytic ability. Moreover, in CSR mice, the CD33 protein level in hippocampal tissue was significantly downregulated, but the TREM2 protein level was increased. In BV2 microglial cells, downregulation of CD33 increased TREM2 expression and improved microglial phagocytosis. Then, the sialic ligand monosialo-ganglioside 1 (GM1, 20 mg/kg, i.p.) was administered to mice once a day during CSR. Our results further showed that GM1 activated CD33 and consequently disturbed TREM2-mediated microglial phagocytosis. Finally, GM1 reversed CSR-induced synaptic loss and memory impairment via the CD33/TREM2 signaling pathway in the CA1 region of the hippocampus. This study provides novel evidence that activating CD33 and/or inhibiting TREM2 activity represent potential therapies for sleep loss-induced memory deficits through the modulation of microglial phagocytosis.

    Topics: Animals; G(M1) Ganglioside; Male; Memory Disorders; Mice; Mice, Inbred C57BL; Microglia; Phagocytosis; Signal Transduction; Sleep Deprivation

2023
Mice deficient in GM1 manifest both motor and non-motor symptoms of Parkinson's disease; successful treatment with synthetic GM1 ganglioside.
    Experimental neurology, 2020, Volume: 329

    Parkinson's disease (PD) is a major neurodegenerative disorder characterized by a variety of non-motor symptoms in addition to the well-recognized motor dysfunctions that have commanded primary interest. We previously described a new PD mouse model based on heterozygous disruption of the B4galnt1 gene leading to partial deficiency of the GM1 family of gangliosides that manifested several nigrostriatal neuropathological features of PD as well as movement impairment. We now show this mouse also suffers three non-motor symptoms characteristic of PD involving the gastrointestinal, sympathetic cardiac, and cerebral cognitive systems. Treatment of these animals with a synthetic form of GM1 ganglioside, produced by transfected E. coli, proved ameliorative of these symptoms as well as the motor defect. These findings further suggest subnormal GM1 to be a systemic defect constituting a major risk factor in sporadic PD and indicate the B4galnt1(+/-) (HT) mouse to be a true neuropathological model that recapitulates both motor and non-motor lesions of this condition.

    Topics: Animals; Disease Models, Animal; Female; G(M1) Ganglioside; Gastrointestinal Diseases; Male; Memory Disorders; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Motor Skills Disorders; N-Acetylgalactosaminyltransferases; Parkinson Disease

2020
Pharmacological Manipulation of Trk, p75NTR, and NGF Balance Restores Memory Deficit in Global Ischemia/Reperfusion Model in Rats.
    Journal of molecular neuroscience : MN, 2019, Volume: 68, Issue:1

    Long-term memory impairment is reported in more than 50% of cardiac arrest survivors. Monosialoganglioside (GM1) provided neuroprotection in experimental models of stroke but failed to replicate its promise clinically for unknown reasons. GM1 stimulates the release of nerve growth factor (NGF), which is synthesized as a precursor protein (pro-NGF) that either mediates apoptosis through the p75 neurotrophin receptor (p75NTR) or is cleaved by the protease furin (FUR) to yield mature NGF, the latter supporting survival through tropomyosin kinase receptor (Trk). The flavanol epicatechin (EPI) inhibits p75NTR-mediated signaling and apoptosis by pro-NGF. The aim of the current work is to test whether these two drugs affect, or communicate with, each other in the setting of CNS injuries. Using the two-vessel occlusion model of global ischemia/reperfusion (I/R), we tested if pharmacological modulation of Trk, p75NTR, and NGF balance with GM1, EPI, and their combination, can correct the memory deficit that follows this insult. Finally, we tested if FUR insufficiency and/or p75NTR-mediated apoptosis negatively affect the neurotherapeutic effect of GM1. Key proteins for Trk and p75NTR, FUR, and both forms of NGF were assessed. All treatment regiments successfully improved spatial memory retention and acquisition. A week after the insult, most Trk and p75NTR proteins were normal, but pro/mature NGF ratio remained sharply elevated and was associated with the poorest memory performance. Pharmacological correction of this balance was achieved by reinforcing Trk and p75NTR signaling. GM1 increased FUR levels, while concomitant administration of EPI weakened GM1 effect on pro-survival Trk and p75NTR mediators. GM1 neuroprotection is therefore not limited by FUR but could be dependent on p75NTR. Graphical Abstract "."

    Topics: Animals; Apoptosis; Brain Ischemia; Catechin; G(M1) Ganglioside; Male; Memory Disorders; Nerve Growth Factor; Nerve Tissue Proteins; Neuroprotective Agents; Rats; Rats, Wistar; Receptor, trkA; Receptors, Growth Factor; Receptors, Nerve Growth Factor; Signal Transduction

2019
GM1 ganglioside reverses the cognitive deficits induced by MK801 in mice.
    Behavioural pharmacology, 2016, Volume: 27, Issue:5

    Cognitive deficits are core symptoms of schizophrenia, but effective treatments are still lacking. Previous studies have reported that the brain-derived neurotrophic factor (BDNF) signaling is closely involved in learning and memory. Monosialotetrahexosylganglioside (GM1) is a ganglioside with wide-ranging pharmacologic effects that enhances the BDNF signaling cascade. This study aimed to assess the effects of GM1 on schizophrenia-related cognitive impairments. A brief disruption of N-methyl-D-aspartate receptors with MK801 was used to generate the animal model for cognitive deficits in schizophrenia. It was found that MK801-treated mice showed significant deficits in memory ability compared with control mice in different behavior tests, and this was accompanied by decreased hippocampal BDNF signaling pathway. Consecutive administration of GM1 fully restored the MK801-induced cognitive deficits and the impaired BDNF signaling in the hippocampus. Furthermore, a BDNF system inhibitor abolished the effects of GM1 in the MK801 model. Taken together, our results show that GM1 could reverse the MK801-induced cognitive deficits, suggesting a potential usefulness of GM1 in treating the schizophrenia-related cognitive impairments.

    Topics: Animals; Brain-Derived Neurotrophic Factor; Cognition Disorders; Disease Models, Animal; Dizocilpine Maleate; G(M1) Ganglioside; Hippocampus; Male; Memory Disorders; Mice; Mice, Inbred C57BL; Receptors, N-Methyl-D-Aspartate; Schizophrenia; Signal Transduction

2016
GM1-Modified Lipoprotein-like Nanoparticle: Multifunctional Nanoplatform for the Combination Therapy of Alzheimer's Disease.
    ACS nano, 2015, Nov-24, Volume: 9, Issue:11

    Alzheimer's disease (AD) exerts a heavy health burden for modern society and has a complicated pathological background. The accumulation of extracellular β-amyloid (Aβ) is crucial in AD pathogenesis, and Aβ-initiated secondary pathological processes could independently lead to neuronal degeneration and pathogenesis in AD. Thus, the development of combination therapeutics that can not only accelerate Aβ clearance but also simultaneously protect neurons or inhibit other subsequent pathological cascade represents a promising strategy for AD intervention. Here, we designed a nanostructure, monosialotetrahexosylganglioside (GM1)-modified reconstituted high density lipoprotein (GM1-rHDL), that possesses antibody-like high binding affinity to Aβ, facilitates Aβ degradation by microglia, and Aβ efflux across the blood-brain barrier (BBB), displays high brain biodistribution efficiency following intranasal administration, and simultaneously allows the efficient loading of a neuroprotective peptide, NAP, as a nanoparticulate drug delivery system for the combination therapy of AD. The resulting multifunctional nanostructure, αNAP-GM1-rHDL, was found to be able to protect neurons from Aβ(1-42) oligomer/glutamic acid-induced cell toxicity better than GM1-rHDL in vitro and reduced Aβ deposition, ameliorated neurologic changes, and rescued memory loss more efficiently than both αNAP solution and GM1-rHDL in AD model mice following intranasal administration with no observable cytotoxicity noted. Taken together, this work presents direct experimental evidence of the rational design of a biomimetic nanostructure to serve as a safe and efficient multifunctional nanoplatform for the combination therapy of AD.

    Topics: Administration, Intranasal; Alzheimer Disease; Amino Acid Sequence; Amyloid beta-Peptides; Animals; Apolipoproteins E; Brain; Combined Modality Therapy; Disease Models, Animal; Endocytosis; G(M1) Ganglioside; Glutamates; Lipoproteins, HDL; Memory Disorders; Mice, Inbred ICR; Microglia; Molecular Sequence Data; Nanoparticles; Neuroprotection; Neuroprotective Agents; Particle Size; Peptide Fragments; Peptides; Rats, Sprague-Dawley; Static Electricity; Tissue Distribution

2015
Deficits in cognitive function and hippocampal plasticity in GM2/GD2 synthase knockout mice.
    Hippocampus, 2014, Volume: 24, Issue:4

    In this study, we used GM2/GD2 synthase knockout (GM2/GD2−/−) mice to examine the influence of deficiency in ganglioside “a-pathway” and “b-pathway” on cognitive performances and hippocampal synaptic plasticity. Eight-week-old GM2/GD2−/− male mice showed a longer escape-latency in Morris water maze test and a shorter latency in step-down inhibitory avoidance task than wild-type (WT) mice. Schaffer collateral-CA1 synapses in the hippocampal slices from GM2/GD2−/− mice showed an increase in the slope of EPSPs with reduced paired-pulse facilitation, indicating an enhancement of their presynaptic glutamate release. In GM2/GD2−/− mice, NMDA receptor (NMDAr)-dependent LTP could not be induced by high-frequency (100–200 Hz) tetanus or θ-burst conditioning stimulation (CS), whereas NMDAr-independent LTP was induced by medium-frequency CS (20–50 Hz). The application of mono-sialoganglioside GM1 in the slice from GM2/GD2−/− mice, to specifically recover the a-pathway, prevented the increased presynaptic glutamate release and 20 Hz-LTP induction, whereas it could not rescue the impaired NMDAr-dependent LTP. These findings suggest that b-pathway deficiency impairs cognitive function probably through suppression of NMDAr-dependent LTP, while a-pathway deficiency may facilitate NMDAr-independent LTP through enhancing presynaptic glutamate release. As both of the NMDAr-independent LTP and increased presynaptic glutamate release were sensitive to the blockade of L-type voltage-gated Ca2+ channels (L-VGCC), a-pathway deficiency may affect presynaptic L-VGCC.

    Topics: Animals; Avoidance Learning; CA1 Region, Hippocampal; Calcium; Cognition Disorders; Electric Stimulation; Excitatory Postsynaptic Potentials; G(M1) Ganglioside; In Vitro Techniques; Long-Term Potentiation; Male; Maze Learning; Memory Disorders; Mice; Mice, Knockout; N-Acetylgalactosaminyltransferases; Neuronal Plasticity; Receptors, N-Methyl-D-Aspartate; Synapses; Synaptic Transmission

2014
Monosialoanglioside improves memory deficits and relieves oxidative stress in the hippocampus of rat model of Alzheimer's disease.
    Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 2013, Volume: 34, Issue:8

    GM-1 ganglioside (GM-1) has been proposed as a new therapeutic agent against Alzheimer's disease (AD). Therefore, in this study we aimed to investigate the effects of GM1 on memory deficits and oxidative stress in the hippocampus of rat model of AD. Wistar rats were randomly divided into three groups (n = 15): control group, model group, and treatment group, which were injected with vehicle, Aβ1-40, and Aβ1-40 together with GM-1, respectively. Morris water maze test was performed to evaluate spatial learning and memory of the rats. Brain malondialdehyde (MDA) content was detected by biochemical assay, and 4-hydroxynonenal (4-HNE) level in the hippocampus was examined by immunohistochemistry. The results showed that learning and memory deficits were improved in treatment group compared to model group. Brain MDA content and 4-HNE level in hippocampus CA1 were much lower in treatment group than in model group. In summary, we demonstrate that GM-1 could improve spatial learning and memory deficits in rat model of AD, and this may be mediated by the inhibition of oxidative stress and lipid peroxidation in the neurons. These data suggest that GM-1 is a potential agent for AD treatment.

    Topics: Aldehydes; Alzheimer Disease; Animals; Disease Models, Animal; G(M1) Ganglioside; Hippocampus; Malondialdehyde; Maze Learning; Memory Disorders; Oxidative Stress; Rats; Rats, Wistar

2013
GM1 produces attenuation of short-term memory deficits in Hebb-Williams maze performance after unilateral entorhinal cortex lesions.
    Physiology & behavior, 1999, Volume: 66, Issue:3

    The Hebb-Williams maze was used to examine spatial abilities of adult male Sprague-Dawley rats with unilateral electrolytic entorhinal cortex lesions. The injured rats were treated for 14 days with either saline or ganglioside GM1. Testing was begun 7 weeks following injury, and involved 12 maze problems with independent configurations, with immediate starting replacement used for the six trials per problem. Compared to sham-operated counterparts, the rats with lesion plus saline treatment were impaired in total number of errors, initial entry errors, and repeat errors over 12 consecutive problems. GM1-treated rats showed improved performance, making significantly fewer total and repeat errors, indicating that this substance may be potentially useful as therapy after entorhinal cortex injury.

    Topics: Analysis of Variance; Animals; Brain Injuries; Cues; Disease Models, Animal; Entorhinal Cortex; G(M1) Ganglioside; Male; Maze Learning; Memory Disorders; Memory, Short-Term; Neuronal Plasticity; Neuroprotective Agents; Orientation; Rats; Rats, Sprague-Dawley

1999
Siagoside selectively attenuates morphological and functional striatal impairments induced by transient forebrain ischemia in rats.
    Stroke, 1992, Volume: 23, Issue:2

    Transient forebrain ischemia induced in rats by the four-vessel occlusion method is known to produce severe neural damage in the hippocampus and striatum and a behavioral syndrome the major symptom of which is a working memory deficit. Recent evidence suggests that monosialogangliosides can ameliorate postischemic symptoms. Our purpose was to study the effect of siagoside, the inner ester of GM1 ganglioside, on some behavioral and morphological impairments induced by four-vessel occlusion in rats.. Rats were injected daily with 5 mg/kg i.p. siagoside starting 4 hours after the cerebral ischemia. After 14 days the rats were tested for working memory in a water T maze or scored for apomorphine-induced stereotypy. The rats were killed 21 days after the cerebral ischemia. Histological and computer-assisted morphometric analyses were performed on cresyl violet-stained brain sections, which were graded according to a neuropathologic score, and on sections stained with a monoclonal antiserum against dopamine and cyclic adenosine-3',5'-monophosphate-regulated phosphoprotein, a marker for striatal dopaminoceptive neurons.. Siagoside treatment reduced the stereotypy score induced by low doses of apomorphine and the extent of striatal lesions but did not affect the working memory deficit or the extent of hippocampal lesions.. Daily siagoside treatment after acute cerebral ischemia attenuates some morphological and functional deficits related to striatal damage. These effects can be interpreted as a selective protective action on striatal neural populations or as a modulatory action on neural systems involved in striatal control. These data are consistent with preliminary clinical reports showing that monosialogangliosides enhance motor recovery after acute ischemic stroke.

    Topics: Animals; Apomorphine; Behavior, Animal; Brain; Brain Ischemia; Choice Behavior; Corpus Striatum; Dopamine and cAMP-Regulated Phosphoprotein 32; G(M1) Ganglioside; Germ-Free Life; Hippocampus; Male; Memory Disorders; Nerve Tissue Proteins; Phosphoproteins; Prosencephalon; Rats; Rats, Inbred Strains; Stereotyped Behavior

1992
Ganglioside AGF2 prevents the cognitive impairments and cholinergic cell loss following intraventricular colchicine.
    Experimental neurology, 1991, Volume: 112, Issue:3

    Ganglioside AGF2 prevented the cognitive and locomotor alterations induced by intraventricular colchicine. Adult male rats were initially trained to perform a standard radial arm maze (RAM) task. Following training, they were injected intraperitoneally with 10 mg/kg AGF2 (COL/AGF2), cerebrospinal fluid (CSF/AGF2) or the saline vehicle (COL/SAL, CSF/SAL) for 3 days prior to and for 14 days following the bilateral injection of colchicine (7 micrograms/0.5 microliters) or artificial CSF into the lateral ventricles. Colchicine (COL/SAL) impaired performance of the standard RAM task as well as a working memory version of the task in which various delays were imposed between the fourth and fifth arm choices. Colchicine also produced a transient hyperactivity which subsided within 10 weeks following surgery. In contrast, AGF2 (COL/AGF2) prevented the impairments in RAM performance and the alterations in locomotor behavior. Colchicine also produced significant decreases in hippocampal ChAT activity and high affinity choline uptake that were prevented by prior treatment with AGF2. Finally, colchicine produced a 35% decrease in the number of acetylcholinesterase-positive (cholinergic) neurons in the medial septum and vertical limb of the diagonal band (MS/VLDB) which was also prevented by AGF2. Thus, the behavioral and neurochemical protection afforded by AGF2 was paralleled by a prevention of the loss of hippocampal cholinergic parameters and cholinergic neurons in the MS/VLDB.

    Topics: Animals; Behavior, Animal; Cell Survival; Choline O-Acetyltransferase; Colchicine; G(M1) Ganglioside; Injections, Intraventricular; Locomotion; Male; Memory Disorders; Rats

1991
Limited neocortical devascularizing lesions causing deficits in memory retention and choline acetyltransferase activity--effects of the monosialoganglioside GM1.
    Neuroscience, 1989, Volume: 31, Issue:1

    In mature rats with unilateral cortical lesions, choline acetyltransferase activity was found to decrease by 40% in the ipsilateral nucleus basalis magnocellularis, compared with control animals. Intraventricular administration of the monosialoganglioside GM1 (5 mg/kg per day), via minipumps, over a period of 14 days prevented this fall in choline acetyltransferase activity. The activity of this enzyme in the sham operated subjects was not significantly different from that in the unoperated group. This biochemical data is in full agreement with regards to the protective action of monosialoganglioside GM1 on forebrain cholinergic neurons. In this study the behavioral effects of these cortical lesions were investigated for the first time. Results show that these lesions, with their associated retrograde neuronal degenerative effects, altered a variety of sensorimotor and memory-based behaviors. In particular, the limited unilateral devascularization of the neocortex increased baseline locomotor activity above control; affected motor coordination; impaired passive avoidance retention and reacquisition; and decreased the retention of learnt Morris water-maze information. Infusion of the monosialoganglioside into the ventricles, whilst having no effect on the increased motor activity or motor coordination deficit, did enhance the reacquisition of information in both memory-related tasks.

    Topics: Animals; Brain Injuries; Choline O-Acetyltransferase; G(M1) Ganglioside; Injections, Intraventricular; Male; Memory Disorders; Movement Disorders; Rats; Rats, Inbred Strains

1989