g(m1)-ganglioside and Deafness

g(m1)-ganglioside has been researched along with Deafness* in 3 studies

Other Studies

3 other study(ies) available for g(m1)-ganglioside and Deafness

ArticleYear
Factors influencing neurotrophic effects of electrical stimulation in the deafened developing auditory system.
    Hearing research, 2008, Volume: 242, Issue:1-2

    Research in animal models has demonstrated that electrical stimulation from a cochlear implant (CI) may help prevent degeneration of the cochlear spiral ganglion (SG) neurons after deafness. In cats deafened early in life, effective stimulation of the auditory nerve with complex signals for several months preserves a greater density of SG neurons in the stimulated cochleae as compared to the contralateral deafened ear. However, SG survival is still far from normal even with early intervention with an implant. Thus, pharmacologic agents and neurotrophic factors that might be used in combination with an implant are of great interest. Exogenous administration of GM1 ganglioside significantly reduces SG degeneration in deafened animals studied at 7-8 weeks of age, but after several months of stimulation, GM1-treated animals show only modestly better preservation of SG density compared to age-matched non-treated animals. A significant factor influencing neurotrophic effects in animal models is insertion trauma, which results in significant regional SG degeneration. Thus, an important goal is to further improve human CI electrode designs and insertion techniques to minimize trauma. Another important issue for studies of neurotrophic effects in the developing auditory system is the potential role of critical periods. Studies examining animals deafened at 30 days of age (rather than at birth) have explored whether a brief initial period of normal auditory experience affects the vulnerability of the SG or cochlear nucleus (CN) to auditory deprivation. Interestingly, SG survival in animals deafened at 30-days was not significantly different from age-matched neonatally deafened animals, but significant differences were observed in the central auditory system. CN volume was significantly closer to normal in the animals deafened at 30 days as compared to neonatally deafened animals. However, no difference was observed between the stimulated and contralateral CN volumes in either deafened group. Measurements of AVCN spherical cell somata showed that after later onset of deafness in the 30-day deafened group, mean cell size was significantly closer to normal than in the neonatally deafened group. Further, electrical stimulation elicited a significant increase in spherical cell size in the CN ipsilateral to the implant as compared to the contralateral CN in both deafened groups. Neuronal tracer studies have examined the primary afferent projections from the SG to the CN

    Topics: Aging; Animals; Animals, Newborn; Auditory Pathways; Cats; Cell Survival; Cochlear Nucleus; Deafness; Electric Stimulation; G(M1) Ganglioside; Models, Animal; Neomycin; Nerve Growth Factors; Protein Synthesis Inhibitors; Spiral Ganglion

2008
Neurotrophic effects of GM1 ganglioside and electrical stimulation on cochlear spiral ganglion neurons in cats deafened as neonates.
    The Journal of comparative neurology, 2007, Apr-20, Volume: 501, Issue:6

    Previous studies have shown that electrical stimulation of the cochlea by a cochlear implant promotes increased survival of spiral ganglion (SG) neurons in animals deafened early in life (Leake et al. [1999] J Comp Neurol 412:543-562). However, electrical stimulation only partially prevents SG degeneration after deafening and other neurotrophic agents that may be used along with an implant are of great interest. GM1 ganglioside is a glycosphingolipid that has been reported to be beneficial in treating stroke, spinal cord injuries, and Alzheimer's disease. GM1 activates trkB signaling and potentiates neurotrophins, and exogenous administration of GM1 has been shown to reduce SG degeneration after hearing loss. In the present study, animals were deafened as neonates and received daily injections of GM1, beginning either at birth or after animals were deafened and continuing until the time of cochlear implantation. GM1-treated and deafened control groups were examined at 7-8 weeks of age; additional GM1 and no-GM1 deafened control groups received a cochlear implant at 7-8 weeks of age and at least 6 months of unilateral electrical stimulation. Electrical stimulation elicited a significant trophic effect in both the GM1 group and the no-GM1 group as compared to the contralateral, nonstimulated ears. The results also demonstrated a modest initial improvement in SG density with GM1 treatment, which was maintained by and additive with the trophic effect of subsequent electrical stimulation. However, in the deafened ears contralateral to the implant SG soma size was severely reduced several months after withdrawal of GM1 in the absence of electrical activation.

    Topics: Age Factors; Animals; Cats; Cell Differentiation; Cell Survival; Cochlea; Cochlear Implants; Deafness; Electric Stimulation; Evoked Potentials, Auditory; G(M1) Ganglioside; Neomycin; Nerve Degeneration; Neurons; Neurons, Afferent; Spiral Ganglion

2007
Does exogenous GM1 ganglioside enhance the effects of electrical stimulation in ameliorating degeneration after neonatal deafness?
    Hearing research, 2001, Volume: 159, Issue:1-2

    This study examined the combined effects of administration of exogenous GM1 ganglioside and electrical stimulation on the cochlear nucleus (CN) of cats deafened neonatally by ototoxic drugs. Five normal hearing adult cats served as controls. Another 12 cats were deafened bilaterally by daily injections of neomycin sulfate (60 mg/kg) for 17-21 days after birth until auditory brainstem testing demonstrated profound hearing loss. Six of the deaf animals comprised the GM1 group, which received daily injections of GM1 ganglioside (30 mg/kg) for 28-38 days during the period after profound deafness was confirmed, and prior to receiving a cochlear implant. The non-GM1 group (n=6) received no treatment during this interim period. All the deafened animals underwent unilateral cochlear implantation at 6-9 weeks postnatal and received several months (mean duration, 32 weeks) of chronic electrical stimulation (4 h/day, 5 days/week). Stimulation was delivered by intracochlear bipolar electrodes, using electrical signals that were designed to be temporally challenging to the central auditory system. Results showed that in the neonatally deafened animals, both the GM1 and non-GM1 groups, the volume of the CN was markedly reduced (to 76% of normal), but there was no difference between the animals that received GM1 and those that did not. The cross sectional areas of spherical cell somata in both GM1 and non-GM1 groups also showed a highly significant reduction in size, to < or =75% of normal after neonatal deafening. Moreover, in both the GM1 and non-GM1 groups, the spherical cells in the CN ipsilateral to the implanted cochlea were significantly larger (6%) than cells in the control, unstimulated CN. Again, however, there was no significant difference between the GM1 group and the non-GM1 group in spherical cell size. These results contrast sharply with previous reports that exogenous GM1 prevents CN degeneration after neonatal conductive hearing loss and partially prevents spiral ganglion cell degeneration when administered immediately after ototoxic drug deafening in adult animals. Taken together, findings to date suggest that GM1 may be effective in preventing degeneration only if the GM1 is administered immediately at the time hearing loss occurs.

    Topics: Animals; Animals, Newborn; Cats; Cochlear Implants; Cochlear Nucleus; Deafness; Electric Stimulation Therapy; G(M1) Ganglioside; Nerve Degeneration

2001