g(m1)-ganglioside has been researched along with Brain-Infarction* in 1 studies
1 other study(ies) available for g(m1)-ganglioside and Brain-Infarction
Article | Year |
---|---|
CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke.
Cytidine-5'-diphosphocholine (CDP-choline, Citicoline, Somazina) is in clinical use (intravenous administration) for stroke treatment in Europe and Japan, while USA phase III stroke clinical trials (oral administration) were disappointing. Others showed that CDP-choline liposomes significantly increased brain uptake over the free drug in cerebral ischemia models. Liposomes were formulated as DPPC, DPPS, cholesterol, GM(1) ganglioside; 7/4/7/1.57 molar ratio or 35.8/20.4/35.8/8.0 mol%. GM(1) ganglioside confers long-circulating properties to the liposomes by suppressing phagocytosis. CDP-choline liposomes deliver the agent intact to the brain, circumventing the rate-limiting, cytidine triphosphate:phosphocholine cytidylyltransferase in phosphatidylcholine synthesis. Our data show that CDP-choline liposomes significantly ( P < 0.01) decreased cerebral infarction (by 62%) compared to the equivalent dose of free CDP-choline (by 26%) after 1 h focal cerebral ischemia and 24 h reperfusion in spontaneously hypertensive rats. Beneficial effects of CDP-choline liposomes in stroke may derive from a synergistic effect between the phospholipid components of the liposomes and the encapsulated CDP-choline. Topics: Animals; Brain; Brain Infarction; Brain Ischemia; Cholesterol; Choline; Cytidine Diphosphate Choline; Disease Models, Animal; Drug Combinations; Drug Synergism; G(M1) Ganglioside; Liposomes; Male; Phagocytosis; Phosphatidylcholines; Rats; Rats, Inbred SHR; Reperfusion Injury; Stroke; Treatment Outcome | 2005 |