furanoheliangolide and Inflammation

furanoheliangolide has been researched along with Inflammation* in 2 studies

Other Studies

2 other study(ies) available for furanoheliangolide and Inflammation

ArticleYear
Sesquiterpene lactones from Lychnophora species: Antinociceptive, anti-inflammatory, and antioxidant pathways to treat acute gout.
    Journal of ethnopharmacology, 2021, Apr-06, Volume: 269

    Lychnophora trichocarpha and Lychnophora passerina are species used in folk medicine to treat inflammation, pain, and rheumatism. Previous studies have demonstrated the anti-inflammatory effect of ethanol extracts of these species and identified that sesquiterpene lactones contribute to this activity.. Gout is an acute inflammatory arthritis caused by the deposition of monosodium urate (MSU) crystals in joints. Inflammation in joints induces oxidative stress in defense cells, releasing pro-inflammatory mediators. This study has three objectives: (1) to demonstrate the effects of sesquiterpene lactones lychnopholide and eremantholide C isolated from L. trichocarpha and goyazensolide isolated from L. passerina on arthritis induced by MSU crystals in C57BL6 mice; (2) to determine whether or not these compounds can inhibit the migration of neutrophils and the release of TNF-α and IL-1β cytokines in the inflammation region; and (3) to evaluate the effects of sesquiterpene lactones on the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in the cartilage of C57BL/6 mice with gouty arthritis.. The anti-inflammatory, antinociceptive, and antioxidant activities of sesquiterpene lactones in C57BL/6 mice with MSU crystal-induced arthritis were evaluated. In our experimental model, the mice were injected with MSU crystals in the tibiofemoral joint to induce arthritis and then treated with indomethacin, vitamin C, and sesquiterpene lactones. Nociception was evaluated before and after inflammation induction and treatments, neutrophil migration, IL-1β and TNF-α concentrations, and SOD and CAT activities.. Sesquiterpene lactones exerted an anti-inflammatory effect by inhibiting neutrophil migration and TNF-α production. These compounds also demonstrated antinociceptive and antioxidant activities.. Lychnopholide, eremantholide C, and goyazensolide improved the inflammation induced by MSU crystals by inhibiting the migration of neutrophils to the inflamed area and by blocking the release of the pro-inflammatory cytokine TNF-α. In addition, sesquiterpene lactones reduced oxidative stress by activating SOD and CAT. These results suggest that sesquiterpene lactones have anti-gout activity through the inflammation, pain, and oxidative stress pathways.

    Topics: Analgesics; Animals; Anti-Inflammatory Agents; Antioxidants; Arthritis, Gouty; Asteraceae; Bridged-Ring Compounds; Catalase; Furans; Inflammation; Interleukin-1beta; Joints; Lactones; Male; Medicine, Traditional; Mice, Inbred C57BL; Neutrophils; Plant Extracts; Sesquiterpenes; Sesterterpenes; Superoxide Dismutase; Tumor Necrosis Factor-alpha; Uric Acid

2021
The influence of seasonality on the content of goyazensolide and on anti-inflammatory and anti-hyperuricemic effects of the ethanolic extract of Lychnophora passerina (Brazilian arnica).
    Journal of ethnopharmacology, 2017, Feb-23, Volume: 198

    Lychnophora passerina (Mart ex DC) Gardn (Asteraceae), popularly known as Brazilian arnica, is used in Brazilian folk medicine to treat pain, rheumatism, bruises, inflammatory diseases and insect bites.. Investigate the influence of the seasons on the anti-inflammatory and anti-hyperuricemic activities of ethanolic extract of L. passerina and the ratio of the goyazensolide content, main chemical constituent of the ethanolic extract, with these activities.. Ethanolic extracts of aerial parts of L. passerina were obtained from seasons: summer (ES), autumn (EA), winter (EW) and spring (EP). The sesquiterpene lactone goyazensolide, major metabolite, was quantified in ES, EA, EW and EP by a developed and validated HPLC-DAD method. The in vivo anti-hyperuricemic and anti-inflammatory effects of the ethanolic extracts from L. passerina and goyazensolide were assayed on experimental model of oxonate-induced hyperuricemia in mice, liver xanthine oxidase (XOD) inhibition and on carrageenan-induced paw edema in mice.. HPLC method using aqueous solution of acetic acid 0.01% (v/v) and acetonitrile with acetic acid 0.01% (v/v) as a mobile phase in a gradient system, with coumarin as an internal standard and DAD detection at 270nm was developed. The validation parameters showed linearity in a range within 10.0-150.0µg/ml, with intraday and interday precisions a range of 0.61-3.82. The accuracy values of intraday and interday analysis within 87.58-100.95%. EA showed the highest goyazensolide content. From the third to the sixth hour after injection of carrageenan, treatments with all extracts at the dose of 125mg/kg were able to reduce edema. Goyazensolide (10mg/kg) showed significant reduction of paw swelling from the second hour assay. This sesquiterpene lactone was more active than extracts and presented similar effect to indomethacin. Treatments with ES, EA and EP (125mg/kg) and goyazensolide (10mg/kg) reduced serum urate levels compared to hyperuricemic control group and were able to inhibit liver XOD activity. One of the mechanisms by which ES, EA, EP and goyazensolide exercise their anti-hyperuricemic effect is by the inhibition of liver XOD activity. Goyazensolide was identified as the main compound present in ES, EA, EW and EP and it is shown to be one of the chemical constituents responsible for the anti-inflammatory and anti-hyperuricemic effects of the ethanolic extracts.. The anti-inflammatory and anti-hyperuricemic activities of the ethanolic extracts from L. passerina were not proportionally influenced by the variation of goyazensolide content throughout the seasons. The involvement of goyazensolide on in vivo anti-inflammatory and anti-hyperuricemic activities of L.passerina extracts was confirmed, as well as the possibility of participation of other constituents on these effects. This study demonstrated that the aerial parts of L. passerina may be collected in any season for use as anti-inflammatory agent. For use in hyperuricemia, the best seasons for the collection are summer, autumn and spring. The ethanolic extract of L. passerina and goyazensolide can be considered promising agents in the therapeutic of inflammation, hyperuricemia and gout.

    Topics: Animals; Anti-Inflammatory Agents; Asteraceae; Brazil; Bridged-Ring Compounds; Chromatography, High Pressure Liquid; Disease Models, Animal; Edema; Ethanol; Furans; Gout; Gout Suppressants; Hyperuricemia; Indomethacin; Inflammation; Male; Medicine, Traditional; Mice; Plant Components, Aerial; Plant Extracts; Seasons; Sesterterpenes; Xanthine Oxidase

2017