fura-red has been researched along with Myocardial-Ischemia* in 1 studies
1 other study(ies) available for fura-red and Myocardial-Ischemia
Article | Year |
---|---|
Calcium transient alternans in blood-perfused ischemic hearts: observations with fluorescent indicator fura red.
Ischemia produces striking electrophysiological abnormalities in blood-perfused hearts that may be caused, in part, by effects of ischemia on intracellular calcium. To test this hypothesis, intracellular Ca2+ concentration ([Ca2+]i) transients were recorded from the epicardial surface of blood- and saline-perfused rabbit hearts using the long-wavelength indicator Fura Red. Calcium transients were much larger than the movement artifact, representing up to 29% of the total signal. Switching the perfusate from saline to blood did not affect the time course of the transients or the apparent level of [Ca2+]i. Compartmentation of Fura Red fluorescence was estimated by exposure to Mn2+. The results were cytosol 60 +/- 3%, organelles 12 +/- 2%, and autofluorescence plus partly deesterified Fura Red 29 +/- 4%. [Ca2+]i transients were calibrated in situ by perfusion of the extracellular space with high-Ca2+ and Ca(2+)-free EGTA solutions. Peak systolic [Ca2+]i was 663 +/- 74 nM, and end-diastolic [Ca2+]i was 279 +/- 59 nm. Ischemia was produced by interruption of aortic perfusion for 2.5 min during pacing (150 beats/min). Ischemia produced broadening of the [Ca2+]i transient, along with beat-to-beat alternations in the peak systolic and end-diastolic level of [Ca2+]i (calcium transient alternans). [Ca2+]i transient alternans occurred in 82% of blood-perfused hearts vs. 43% of saline-perfused hearts. The discrepancy between large and small transients (mean alternans ratio) was larger in the blood-perfused hearts (0.23 +/- 0.04 vs. 0.07 +/- 0.03, P = 0.005). These observations are important because of the apparent relationship of [Ca2+]i transient alternans to electrical alternans and arrhythmias during ischemia. Topics: Animals; Benzofurans; Calcium; Calibration; Female; Fluorescent Dyes; Heart; Imidazoles; Ionomycin; Kinetics; Male; Manganese; Myocardial Ischemia; Myocardium; Rabbits; Spectrometry, Fluorescence; Subcellular Fractions; Time Factors | 1997 |