fumarates has been researched along with Myocardial-Ischemia* in 3 studies
1 trial(s) available for fumarates and Myocardial-Ischemia
Article | Year |
---|---|
Effect of add-on aliskiren to type 1 angiotensin receptor blocker therapy on endothelial function and autonomic nervous system in hypertensive patients with ischemic heart disease.
The aim of this study was to evaluate the add-on effect of aliskiren to valsartan on endothelial-dependent vasodilation in hypertensive patients with ischemic heart disease (IHD). After 4 weeks of treatment with 80 mg of valsartan, 28 patients were allocated to either continued treatment with valsartan or an add-on treatment with valsartan plus 150 mg of aliskiren. Aliskiren significantly decreased plasma renin activity, whereas endothelium-dependent vasodilation measured by flow-mediated dilation (FMD) did not change. In contrast, heart rate significantly decreased (73.1 ± 9.8 to 66.3 ± 7.0 beats per minute at baseline and 24 weeks, respectively [P = .009]) and the standard deviation of the R-R intervals (SDNN) significantly increased in the aliskiren group. The add-on aliskiren to valsartan therapy may not improve endothelial functions, although it significantly reduced resting heart rate via regulation of the autonomic nervous system in hypertensive patients with IHD. Topics: Aged; Amides; Angiotensin II Type 1 Receptor Blockers; Antihypertensive Agents; Autonomic Nervous System; Comorbidity; Drug Therapy, Combination; Endothelium, Vascular; Female; Fumarates; Heart Rate; Humans; Hypertension; Male; Middle Aged; Myocardial Ischemia; Renin; Tetrazoles; Treatment Outcome; Valine; Valsartan; Vasodilation | 2014 |
2 other study(ies) available for fumarates and Myocardial-Ischemia
Article | Year |
---|---|
Genetically determined angiotensin converting enzyme level and myocardial tolerance to ischemia.
Angiotensin I-converting enzyme (ACE; kininase II) levels in humans are genetically determined. ACE levels have been linked to risk of myocardial infarction, but the association has been inconsistent, and the causality underlying it remains undocumented. We tested the hypothesis that genetic variation in ACE levels influences myocardial tolerance to ischemia. We studied ischemia-reperfusion injury in mice bearing 1 (ACE1c), 2 (ACE2c, wild type), or 3 (ACE3c) functional copies of the ACE gene and displaying an ACE level range similar to humans. Infarct size in ACE1c was 29% lower than in ACE2c (P<0.05). Pretreatment with a kinin B2 receptor antagonist suppressed this reduction. In ACE3c, infarct size was the same as in ACE2c. But ischemic preconditioning, which reduced infarct size in ACE2c (-63%, P<0.001) and ACE1c (-52%, P<0.05), was not efficient in ACE3c (-2%, NS, P<0.01 vs. ACE2c). In ACE3c, ischemic preconditioning did not decrease myocardial inflammation or cardiomyocyte apoptosis. Pretreatment with a renin inhibitor had no cardioprotective effect in ACE2c, but in ACE3c partially restored (38%) the cardioprotection of ischemic preconditioning. Thus, a modest genetic increase in ACE impairs myocardial tolerance to ischemia. ACE level plays a critical role in cardiac ischemia, through both kinin and angiotensin mediated mechanisms. Topics: Amides; Angiotensin I; Angiotensin II; Animals; Apoptosis; Blood Pressure; Bradykinin; Bradykinin Receptor Antagonists; Fumarates; Heart; Kinins; Lung; Mice; Mice, Mutant Strains; Myocardial Infarction; Myocardial Ischemia; Myocardium; Peptidyl-Dipeptidase A; Renin; Reperfusion Injury | 2010 |
Myocardial metabolism of exogenous FDP is consistent with transport by a dicarboxylate transporter.
The extent to and the mechanism by which fructose-1,6-bisphosphate (FDP) crosses cell membranes are unknown. We hypothesized that its transport is either via band 3 or a dicarboxylate transporter. The question was addressed in isolated Langendorff rat hearts perfused under normoxic conditions. Groups of hearts received the following metabolic substrates (in mM): 5 FDP; 5 FDP + either 5, 10, or 20 fumarate; 10 FDP and either 5, 10, or 20 fumarate; or 5 FDP + 2 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS), a band 3 inhibitor. FDP uptake and metabolism were measured as production of [(13)C]lactate from [(13)C]FDP or (14)CO(2) and [(14)C]lactate from uniformly labeled [(14)C]FDP in sample perfusates. During 30 min of perfusion, FDP metabolism was 12.4 +/- 2.6 and 31.2 +/- 3.0 micromol for 5 and 10 mM FDP, respectively. Addition of 20 mM fumarate reduced FDP metabolism over a 30-min perfusion period to 3.1 +/- 0.6 and 6.3 +/- 0.5 micromol for 5 and 10 mM FDP groups, respectively. DNDS did not affect FDP utilization. These data are consistent with transport of FDP by a dicarboxylate transport system. Topics: Animals; Anion Exchange Protein 1, Erythrocyte; Biological Transport; Carbon Dioxide; Carbon Radioisotopes; Dicarboxylic Acid Transporters; Energy Metabolism; Fructosediphosphates; Fumarates; Glycolysis; Hydrogen-Ion Concentration; Lactic Acid; Magnetic Resonance Spectroscopy; Myocardial Ischemia; Myocardium; Rats; Sarcolemma | 2001 |