fumarates and Lupus-Nephritis

fumarates has been researched along with Lupus-Nephritis* in 2 studies

Other Studies

2 other study(ies) available for fumarates and Lupus-Nephritis

ArticleYear
Aliskiren attenuates proteinuria in mice with lupus nephritis by a blood pressure-independent mechanism.
    Lupus, 2013, Volume: 22, Issue:2

    This study revealed that low-dose aliskiren treatment could attenuate proteinuria by interrupting the renin-angiotensin system in mice with lupus nephritis, and the beneficial effect was beyond blood pressure control. An in and ex vivo fluorescence imaging (using a non-invasion in vivo imaging system) showed intense labeling of renin in the kidneys of female MRL/lpr mice. In the study, Alzet mini-osmotic pumps were implanted into 6-week-old female MRL/lpr mice. Pumps were filled with either phosphate-buffered saline or a solution of aliskiren dissolved in phosphate-buffered saline (20 mg/kg/day) and replaced at 28-day intervals. Mice were sacrificed at four and eight weeks. To label cells for DNA synthesis, bromodeoxyuridine (BrdU) (50 mg/kg) was injected intraperitoneally an hour prior to sacrifice. The level of renin inhibition was adequate, as aliskiren-treated mice demonstrated higher renal renin mRNA expression than controls (p < 0.05). Although there were no significant differences in the systolic blood pressure (control versus aliskiren-treated: 127.20 ± 4.44 mmHg versus 103.80 ± 7.40 mmHg, p > 0.05) and heart rate (control versus aliskiren-treated: 680.50 ± 11.71 versus 647.80 ± 13.90, p > 0.05) of both groups after eight weeks, there was significant reduction of inflammatory cytokines (transforming growth factor-beta1, regulated on activation normal T cell expressed, monocyte chemoattractant protein-1 and osteopontin, p < 0.05), reduction of innate immunity (toll-like receptor 7, p < 0.05), as well as a reduction of glomerular proliferation and inflammation (BrdU-, CD45-, CD3- and F4/80-positive glomerular cells, p < 0.01) after aliskiren infusion, which might translate into an improvement in proteinuria (control versus aliskiren-treated: 493.7 versus 843.7 mg/g, p < 0.01) or weight gain (control versus aliskiren-treated: 5.65 ± 1.61 versus 8.67 ± 0.97%, p < 0.05).

    Topics: Amides; Animals; Blood Pressure; Disease Models, Animal; Female; Fumarates; Lupus Nephritis; Mice; Mice, Inbred Strains; Proteinuria; Renal Agents; Renin

2013
Magnetic resonance imaging with hyperpolarized [1,4-(13)C2]fumarate allows detection of early renal acute tubular necrosis.
    Proceedings of the National Academy of Sciences of the United States of America, 2012, Aug-14, Volume: 109, Issue:33

    Acute kidney injury (AKI) is a common and important medical problem, affecting 10% of hospitalized patients, and it is associated with significant morbidity and mortality. The most frequent cause of AKI is acute tubular necrosis (ATN). Current imaging techniques and biomarkers do not allow ATN to be reliably differentiated from important differential diagnoses, such as acute glomerulonephritis (GN). We investigated whether (13)C magnetic resonance spectroscopic imaging (MRSI) might allow the noninvasive diagnosis of ATN. (13)C MRSI of hyperpolarized [1,4-(13)C(2)]fumarate and pyruvate was used in murine models of ATN and acute GN (NZM2410 mice with lupus nephritis). A significant increase in [1,4-(13)C(2)]malate signal was identified in the kidneys of mice with ATN early in the disease course before the onset of severe histological changes. No such increase in renal [1,4-(13)C(2)]malate was observed in mice with acute GN. The kidney [1-(13)C]pyruvate/[1-(13)C]lactate ratio showed substantial variability and was not significantly decreased in animals with ATN or increased in animals with GN. In conclusion, MRSI of hyperpolarized [1,4-(13)C(2)]fumarate allows the detection of early tubular necrosis and its distinction from glomerular inflammation in murine models. This technique may have the potential to identify a window of therapeutic opportunity in which emerging therapies might be applied to patients with ATN, reducing the need for acute dialysis with its attendant morbidity and cost.

    Topics: Animals; Carbon Isotopes; Early Diagnosis; Folic Acid; Fumarates; Humans; Kidney; Kidney Tubular Necrosis, Acute; Kinetics; Lupus Nephritis; Magnetic Resonance Imaging; Malates; Mice; Mice, Inbred C57BL; Pyruvic Acid

2012